進階搜尋


下載電子全文  
系統識別號 U0026-0907201516413000
論文名稱(中文) 電紡絲奈米碳纖維及其與氫氧化鎳複合物的超級電容特性
論文名稱(英文) Supercapacitive behavior of electrospun carbon nanofibers and their composites with nickel hydroxide
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 賴靖璋
研究生(英文) Ching-Chang Lai
學號 N36024042
學位類別 碩士
語文別 英文
論文頁數 117頁
口試委員 口試委員-李建良
口試委員-陳東煌
口試委員-關旭強
指導教授-羅介聰
中文關鍵字 超級電容  奈米碳纖維  靜電紡絲法  氫氧化鎳 
英文關鍵字 supercapacitor  carbon nanofibers  electrospinning  nickel hydroxide 
學科別分類
中文摘要 本論文以靜電紡絲法製備奈米碳纖維及其複合材料作為超級電容器電極,論文中包含三個部分。在第一部分中,以聚丙烯腈和聚甲基丙烯酸甲酯作為靜電紡絲碳纖維的前驅物,製備具有不同奈米結構的碳纖維。我們研究聚甲基丙烯酸甲酯的分子量對於纖維的型態和電化學性質的影響。在纖維加熱過程中,聚甲基丙烯酸甲酯的分解造成孔洞結構的產生。並且,隨著聚甲基丙烯酸甲酯分子量的增加,奈米纖維從多孔結構轉為中空結構。此外,大量增加的纖維比表面積與孔洞體積,使纖維具有比電容值210 F/g,且在2000次循環後仍具有幾乎100%的比電容殘留率,顯示此電極具有優良的穩定性。在第二部分中,我們分別以氧電漿法與硝酸氧化法對電紡絲碳纖維進行表面改質。這兩種方法都成功接枝各種含氧官能基(主要含氧官能基為羰基)於碳纖維表面,此表面改質促進纖維的潤濕性由疏水性轉為親水性,使得以氧電漿改質和硝酸改質的奈米碳纖維之比電容分別為377.0以及365.4 F/g。在第三部分中,我們製備氫氧化鎳以及奈米碳纖維的複合材料作為超級電容器電極,我們研究複合材料經不同退火溫度後,對於複合纖維的型態和後續的電化學性質影響。電化學結果顯示,此複合材料的比電容值隨著退火溫度的增加而上升,並且在溫度為300 oC時可達最高的比電容值455.0 C/g。
英文摘要 This thesis focuses on the preparation of electrospun carbon nanofibers and their composites as supercapacitor electrodes, which involves three parts. In the first part, nanostructural carbon nanofibers are prepared through electrospinning using polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) as precursors. We investigate the effect of PMMA molecular weight on the morphology and electrochemical performance of the nanofibers. During pyrolysis, PMMA decomposition causes the nanofibers to develop from a porous structure into a hollow structure with increased PMMA molecular weight. Additionally, the removal of PMMA increases substantially the specific surface area and the pore volume of the carbon nanofibers, which results in a specific capacitance of 210 F/g and favorable cycling stability with a retention ratio of almost 100% after 2000 cycles. In the second part, we perform surface modification on electrospun carbon nanofibers using oxygen plasma and nitric acid oxidation. Both methods incorporate various oxygen functionalities, mainly carbonyl groups, onto the carbon surface, resulting in the change of fiber wettability from hydrophobic to hydrophilic. The specific capacitance of the modified carbon nanofibers is 377.0 and 365.4 F/g for oxygen plasma- and nitric acid-treated nanofibers, respectively. In the third part, we prepare Ni(OH)2/carbon nanofiber composites and study the morphological progress and the subsequent electrochemical performance of the composite fibers. Electrochemical measurements reveal that the specific capacity of the Ni(OH)2/carbon nanofiber composites increases with an increase in the annealing temperature and reaches a maximum of 455.0 C/g at 300 oC.
論文目次 摘要 I
Abstract II
誌謝 III
Table of Contents IV
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
Chapter 2 Literature review 4
2.1 Introduction of energy storage devices 4
2.2 Supercapacitor 5
2.2.1 Electrode materials 6
2.2.2 Electrical double-layer capacitors (EDLCs) 8
2.2.3 Pseudocapacitor 10
2.3 Electrospinning 11
2.3.1 Introduction 11
2.3.2 Experimental parameters of electrospinning 12
2.4 Electrospun carbon nanofibers for the use as supercapacitor electrodes 12
Chapter 3 Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors 18
3.1 Introduction 18
3.2 Experimental Section 22
3.2.1 Preparation of electrospun carbon nanofibers 22
3.2.2 Characterization 22
3.3 Results and Discussion 24
3.3.1 Physicochemical properties of electrospun carbon nanofibers 24
3.3.2 Electrochemical performance of electrospun carbon nanofibers 28
3.4 Conclusion 32
Chapter 4 Plasma oxidation of electrospun carbon nanofibers as supercapacitor electrodes 41
4.1 Introduction 41
4.2 Experimental Section 42
4.3 Results and Discussion 44
4.3.1 Physicochemical properties of oxygen plasma-treated electrospun carbon nanofibers 44
4.3.2 Electrochemical performance of oxygen plasma-treated electrospun carbon nanofibers 46
4.4 Conclusion 49
Chapter 5 Nitric acid oxidation of electrospun carbon nanofibers as supercapacitor electrodes 57
5.1 Introduction 57
5.2 Experimental Section 59
5.2.1 Materials and methods 59
5.2.2 Characterization 60
5.3 Results and Discussion 61
5.3.1 Physicochemical properties of the nitric acid oxidized carbon nanofibers 61
5.3.2 Electrochemical performance of the nitric acid oxidized carbon nanofibers 64
5.4 Conclusion 68
Chapter 6 Effect of Temperature on Morphology and Electrochemical Supercapacitive Properties of Electrospun Carbon Nanofibers and Nickel Hydroxide Composites 78
6.1 Introduction 78
6.2 Experimental Section 81
6.2.1 Materials and methods 81
6.2.2 Characterization 82
6.3 Results and Discussion 83
6.3.1 Physicochemical properties of the Ni(OH)2/carbon nanofiber composites 83
6.3.2 Electrochemical performance of the Ni(OH)2/carbon nanofiber composites 88
6.4 Conclusion 91
Chapter 7 Conclusion 99
Reference 101

參考文獻 Reference
[1] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483–2498.
[2] Y. W. Ju, S.-H. Park, H. R. Jung, W. J. Lee, Electrospun Activated Carbon Nanofibers Electrodes Based on Polymer Blends, J. Electrochem. Soc. 156 (2009) A489–A494.
[3] B. H. Kim, K. S. Yang, H. G. Woo, Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor, Electrochem. Commun. 13 (2011) 1042–1046.
[4] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, Co-electrospinning of core-shell fibers using a single-nozzle technique, Langmuir 23 (2007) 2311–2314.
[5] C. K. Hong, K. S. Yang, S. H. Oh, J. H. Ahn, B. H. Cho, C. Nah, Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends, Polym. Int. 57 (2008) 1357–1362.
[6] S. Jagannathan, H. G. Chae, R. Jain, S. Kumar, Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes, J. Power Sources 185 (2008) 676–684.
[7] Y. W. Ju, G. R. Choi, H. R. Jung, W. J. Lee, Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole, Electrochim. Acta 53 (2008) 5796–5803.
[8] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, Y. S. Chen, Supercapacitor Devices Based on Graphene Materials, J. Phys. Chem. C 113 (2009) 13103–13107.
[9] K. W. Park, Carboxylated graphene oxide–Mn2O3 nanorod composites for their electrochemical characteristics, J. Mater. Chem. A 2 (2014) 4292–4298.
[10] J. Li, E. H. Liu, W. Li, X. Y. Meng, S. T. Tan, Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning, J. Alloy. Compd. 478 (2009) 371–374.
[11] B. H. Kim, K. S. Yang, H. G. Woo, Physical and electrochemical studies of polyphenylsilane-derived porous carbon nanofibers produced via electrospinning, Electrochim. Acta 59 (2012) 202–206.
[12] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.
[13] X. Mao, T. A. Hatton, G. C. Rutledge, A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage, Curr. Org. Chem. 17 (2013) 1390–1401.
[14] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937–950.
[15] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid, J. Power Sources 190 (2009) 578–586.
[16] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Nanostructured fibers via electrospinning, Adv. Mater. 13 (2001) 70–72.
[17] M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, H. Horibe, Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition, Polym. J. 39 (2007) 1060–1064.
[18] B. H. Kim, K. S. Yang, Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim. Acta 88 (2013) 597–603.
[19] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 35 (2002) 8456–8466.
[20] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon 44 (2006) 2498–2507.
[21] F. Anton, Process and apparatus for preparing artificial threads, patent: US1975504 A (1934).
[22] F. Anton, Method and apparatus for spinning, patent: US2349950 A (1939).
[23] F. Anton, Artificial thread and method of producing same, patent: US2187306 A (1940).
[24] G. Taylor, Electrically driven jets, Proc. Roy. Soc. Lond. A. 313 (1969) 453–475.
[25] J. Doshi, D. H. Reneker, Eelctrospinning process and applications of electrospun fibers, J. Electrostat. 35 (1995) 151–160.
[26] T. Subbiah, G. S. Bhat, R. W. Tock, S. Pararneswaran, S. S. Ramkumar, Electrospinning of nanofibers, J. Appl. Polym. Sci. 96 (2005) 557–569.
[27] X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43 (2002) 4403–4412.
[28] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261–272.
[29] W. Zhang, J. Liu, G. Wu, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers, Carbon 41 (2003) 2805–2812.
[30] B. H. Kim, K. S. Yang, D. J. Yang, Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors, Electrochim. Acta 109 (2013) 859–865.
[31] A. M. Al-Enizi, A. A. Elzatahry, A. M. Abdullah, M. A. AlMaadeed, J. Wang, D. Zhao, S. Al-Deyab, Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites, Carbon 71 (2014) 276–283.
[32] A. Burke, Ultracapacitors why, how, and where is the technology, J. Power Sources 91 (2000) 37–50.
[33] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.
[34] A. M. Wang, Y. W. Cheng, H. B. Zhang, Y. Hou, Y. Q. Wang, J. Lu, Effect of multi-walled carbon nanotubes and conducting polymer on capacitance of mesoporous carbon electrode, J. Nanosci. Nanotechnol. 14 (2014) 7015–7021.
[35] Y. Zhao, Y. Meng, P. Jiang, Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials, J. Power Sources 259 (2014) 219–226.
[36] H. Zhou, Y. Zhong, Z. He, L. Zhang, J. Wang, J. Zhang, C. Cao, Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance, J. Alloy. Compd. 597 (2014) 1–7.
[37] Q. Li, J. Cheng, B. Wang, L. Zhang, Activated carbon modified by CNTs/Ni-Co oxide as hybrid electrode materials for high performance supercapacitors, IEEE T. Nanotechnol. 13 (2014) 557–562.
[38] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.
[39] D. Y. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74 (1998) 99–107.
[40] R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes, J. Mater. Chem. 21 (2011) 16197–16204.
[41] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett. 77 (2000) 2421–2423.
[42] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5 (2006) 987–994.
[43] B. You, J. Yang, Y. Q. Sun, Q. D. Su, Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor, Chem. Commun. 47 (2011) 12364–12366.
[44] C. Kim, K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett. 83 (2003) 1216–1218.
[45] Y. H. Hsu, C. C. Lai, C. L. Ho, C. T. Lo, Preparation of interconnected carbon nanofibers as electrodes for supercapacitors, Electrochim. Acta 127 (2014) 369–376.
[46] L. Zhang, Y. L. Hsieh, Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems, Eur. Polym. J. 45 (2009) 47–56.
[47] C. Tran, V. Kalra, Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors, J. Power Sources 235 (2013) 289–296.
[48] Q. Wang, Q. Cao, X. Y. Wang, B. Jing, H. Kuang, L. Zhou, Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors, J. Solid State Electrochem. 17 (2013) 2731–2739.
[49] A. B. Fuertes, F. Pico, J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources 133 (2004) 329–336.
[50] S. Jagannathan, T. Liu, S. Kumar, Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile - carbon nanotube composite films, Compos. Sci. Technol. 70 (2010) 593–598.
[51] C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo, J. W. Lee, Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs, Small 1 (2007) 91–95.
[52] H. He, L. Shi, Y. Fang, X. Li, Q. Song, L. Zhi, Mass production of multi-channeled porous carbon nanofibers and their application as binder-free electrodes for high-performance supercapacitors, Small 10 (2014) 4671–4676.
[53] B. H. Kim, K. S. Tang, J. P. Ferraris, Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors, Electrochim. Acta 75 (2012) 324–331.
[54] Z. Bashir, Thermoreversible gelation and plasticization of polyacrylonitrile, Polymer 33 (1992) 4304–4313.
[55] B. Manoj, A. G. Kunjomana, Study of stacking structure of amorphous carbon by X-Ray diffraction technique, Int. J. Electrochem. Sci. 7 (2012) 3127–3134.
[56] K. T. Cho, S. B. Lee, J. W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons, J. Phys. Chem. C 118 (2014) 9357–9367.
[57] S. K. Goel, E. J. Beckman, Generation of microcellular polymetrc foams using supercaitical carbon-dioxide. 1. Effect of pressure and temperature on nucleation, Polym. Eng. Sci. 34 (1994) 1137–1147.
[58] J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol, Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers, Polym. Int. 55 (2006) 825–833.
[59] M. S. Dresselhaus, G. Dresselhaus, M. A. Pimenta, P. C. Eklund, Raman scattering in carbon materials, in: M.J. Pelletier (Ed.), Analytical application of Raman spectroscopy, Blackwell, London, 1999, chapter 9.
[60] Z. Tai, X. Yan, J. Lang, Q. Xue, Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets, J. Power Sources 199 (2012) 373–378.
[61] A. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta 50 (2005) 2799–2805.
[62] C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo, S.C. Yang, Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater. 19 (2007) 2341–2346.
[63] I. I. Misnon, R. A. Aziz, N. Khairiyyah, M. Zain, B. Vidhyadharan, S. G. Krishnan, R. Jose, High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes, Mater. Res. Bull. 57 (2014) 221–230.
[64] M. Belleville, C. Condemine, Energy autonomous micro and nano systems, ISTE Ltd, London, 2012.
[65] C. W. Huang, C. T. Hsieh, P. L. Kuo, H. Teng, Electrica double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes, J. Mater. Chem. 22 (2012) 7314–7222.
[66] B. H. Kim, K. S. Yang, H. G. Woo, K. Oshida, Supercapacitor performance of porous carbon nanofiber composites prepared by electrospinning polymethylhydrosiloxane (PMHS)/polyacrylonitrile (PAN) blend solutions, Synth. Met. 161 (2011) 1211–1216.
[67] S. Y. Kim, B. H. Kim, K. S. Yang, Electrochemical behavior of porous carbon nanofibers developed from polyacrylo-nitrile/graphene solutions containing zinc chloride, Curr. Org. Chem. 17 (2013) 1455–1462.
[68] Q. Dong, G. Wang, H. Hu, J. Yang, B. Q. Qian, Z. Ling, J. S. Qiu, Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors, J. Power Sources 243 (2013) 350–353.
[69] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science 332 (2011) 1537–1541.
[70] J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen, X. W. Lou, High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film, Energy Environ. Sci. 7 (2014) 3709–3719.
[71] C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868.
[72] J. Liu, J. Sun, L. Gao, A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films, J. Phys. Chem. C 114 (2010) 19614–19620.
[73] M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz, Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance, Electrochem. Commun. 13 (2011) 90–92.
[74] D. H. Shin, J. S. Lee, J. Jun, J. Jang, Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications, J. Mater. Chem. A 2 (2014) 3364–3371.
[75] D. Bhattacharjya, M. S. Kim, T. S. Bae, J. S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture, J. Power Sources, 244 (2013) 799–805.
[76] B. H. Kim, K. S. Yang, Y. A. Kim, Y. J. Kim, B. An, K. Oshida, Solvent-induced porosity control of carbon nanofiber webs for supercapacitor, J. Power Sources 196 (2011) 10496–10501.
[77] G. Lota, J. Tyczkowski, R. Kapica, K. Lota, E. Frackowiak, Carbon materials modified by plasma treatment as electrodes for supercapacitors, J. Power Sources 195 (2010) 7535–7539.
[78] A. Felten, C. Bittencourt, J. J. Pireaux, G. V. Lier, J. C. Charlier, Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments, J. Appl. Phys. 98 (2005) 74308.
[79] X. Zhang, Y. Huang, T. Wang, L. Liu, Influence of fibre surface oxidation-reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites, Compos. Pt. A-Appl. Sci. Manuf. 38 (2007) 936–944.
[80] D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, T. J. Bandosz, Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors, Adv. Funct. Mater. 19 (2009) 438–447.
[81] S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices, Adv. Mater. 26 (2014) 849–864.
[82] H. Liang, Y. Bu, Y. Zhang, J. Zhang, Graphene oxide as efficient high-concentration formaldehyde scavenger and reutilization in supercapacitor, J. Colloid Interface Sci. 444 (2015) 109–114.
[83] N. Xiao, H. Tan, J. Zhu, L. Tan, X. Rui, X. Dong, Q. Yan, High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid, ACS Appl. Mater. Interfaces 5 (2013) 9656–9662.
[84] S. He, H. Hou, W. Chen, 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors, J. Power Sources 280 (2015) 678–686.
[85] I. Y. Jang, H. Muramatsu, K. C. Park, Y. J. Kim, M. Endo, Capacitance response of double-walled carbon nanotubes depending on surface modification, Electrochem. Commun. 11 (2009) 719–723.
[86] C. Ma, Y. Li, J. Shi, Y. Song, L. Liu, High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching, Chem. Eng. J. 249 (2014) 216–225.
[87] C. C. Lai, C. T. Lo, Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors, Electrochimi. Acta (2015) doi: 10.1016/j.electacta.2015.02.143
[88] M. Kim, I. Oh, J. Kim, Hierarchical porous silicon carbide with controlled micropores and mesopores for electric double layer capacitors, J. Power Sources 282 (2015) 277–285.
[89] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science 313 (2003) 1760–1763.
[90] C. T. Hsieh, W. Y. Chen, Y. S. Cheng, Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites, Electrochim. Acta 55 (2010) 5294–5300.
[91] C. T. Hsieh, H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon 40 (2002) 667–674.
[92] A. Śliwak, B. Grzyb, J. Ćwikła, G. Gryglewicz, Influence of wet oxidation of herringbone carbon nanofibers on the pseudocapacitance effect, Carbon 64 (2013) 324–333.
[93] Y. Qiu, Z. Cheng, B. Guo, H. Fan, S. Sun, T. Wu, L. Jin, L. Fan, X. Feng, Preparation of activated carbon paper through a simple method and application as a supercapacitor, J. Mater. Sci. 50 (2015) 1586–1593.
[94] T. Z. Ren, L. Liu, Y. Zhang, Z. Y. Yuan, Nitric acid oxidation of ordered mesoporous carbons for use in electrochemical supercapacitors, J. Solid State Electrochem. 17 (2013) 2223–2233.
[95] Y. Wang, S. Tao, Y. An, Superwetting monolithic carbon with hierarchical structure as supercapacitor materials, Microporous Mesoporous Mat. 163 (2012) 249–258.
[96] J. W. Lang, X. B. Yan, W. W. Liu, R. T. Wang, Q. J. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, J. Power Sources 204 (2012) 220–229.
[97] S. Hussain, R. Amade, E. Jover, E. Bertran, Functionalization of carbon nanotubes by water plasma, Nanotechnology 23 (2012) 385604.
[98] C. C. Lai, C. T. Lo, Plasma oxidation of electrospun carbon nanofibers as supercapacitor electrodes, RSC Adv. 5 (2015) 38868–38872.
[99] M. P. Bichat, E. Raymundo-Piñero, F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon 48 (2010) 4351–4361.
[100] L. X. Li, F. Li, The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes, New Carbon Mater. 26 (2011) 224–228.
[101] H. P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon 40 (2002) 145–149.
[102] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, The change of bead morphology formed on electrospun polystyrene fibers, Polymer 44, (2003) 4029–4034.
[103] B. E. Conway, Electrochemical supercapacitors-scientific fundamentals and technological applications, Kluwer Academic/Plenum, New York (1999).
[104] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833–840.
[105] T. A. Silva, H. Zanin, E. Saito, R. A. Medeiros, F. C. Vicentini, E. J. Corat, O. Fatibello-Filho, Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material, Electrochim Acta 119 (2014) 114–119.
[106] V. N. Mitkin, Mechanochemical synthesis physical–chemical properties of carbon–fluorocarbon nanocomposition materials, J. Fluorine Chem. 132, (2011) 1047–1066.
[107] Christian L. Mangun, Kelly R. Benak, Michael A. Daley, J. Economy, Oxidation of Activated Carbon Fibers: Effect on Pore size, surface chemistry, and adsorption properties, Chem. Mat. 11 (1999) 3476–3483.
[108] B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, J. H. Han, Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes, Chem. Phys. Lett. 388 (2004) 170–174.
[109] H. Li, H. Xi, S. Zhu, Z. Wen, R. Wang, Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon, Microporous Mesoporous Mat. 96 (2006) 357–362.
[110] W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, Y. Takasu, Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode, Electrochim. Acta 49 (2004) 313–320.
[111] L. Zhang, C. M. B. Holt, E. J. Luber, B. C. Olsen, H. T. Wang, M. Danaie, X. W. Cui, X. H. Tan, V. W. Lui, W. P. Kalisvaart, D. Mitlin, High Rate Electrochemical Capacitors from Three-Dimensional Arrays of Vanadium Nitride Functionalized Carbon Nanotubes, J. Phys. Chem. C 115 (2011) 24381–24393.
[112] G. Sun, D. Long, X. Liu, W. Qiao, L. Zhan, X. Liang, L. Ling, Asymmetric capacitance response from the chemical characteristics of activated carbons in KOH electrolyte, J. Electroanal. Chem. 659 (2011) 161–167.
[113] Y. Yan, T. Kuila, N. H. Kim, J. H. Lee, Effects of acid vapour mediated oxidization on the electrochemical performance of thermally exfoliated graphene, Carbon 74 (2014) 195–206.
[114] B. Y. Venhryn, Z. A. Stotsko, I. I. Grygorchak, B. P. Bakhmatyuk, S. I. Mudry, The effect of ultrasonic and HNO3 treatment of activated carbon from fruit stones on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors, Ultrason. Sonochem. 20 (2013) 1302–1307.
[115] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density, Adv. Mater. 22 (2010) E235–E241.
[116] H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472–7477.
[117] H. Liu, J. Zhang, D. Xu, B. Zhang, L. Shi, L. Huang, S. Tan, In situ formation of Ni(OH)2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material, Appl. Surf. Sci. 317 (2014) 370–377.
[118] G. Hu, C. Li, H. Gong, Capacitance decay of nanoporous nickel hydroxide, J. Power Sources 195 (2010) 6977–6981.
[119] F. Miao, C. Shao, X. Li, Y. Zhang, N. Lu, K. Wang, Y. Liu, One-dimensional heterostructures of beta-nickel hydroxide nanoplates/electrospun carbon nanofibers: controlled fabrication and high capacitive property, Int. J. Hydrog. Energy 39 (2014) 16162–16170.
[120] N. A. Alhebshi, R. B. Rakhi, H. N. Alshareef, Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes, J. Mater. Chem. A 1 (2013) 14897–14903.
[121] B. Zhao, H. Zhuang, T. Fang, Z. Jiao, R. Liu, X. Ling, B. Lu, Y. Jiang, Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors, J. Alloy. Compd. 597 (2014) 291–298.
[122] J. Yan, W. Sun, T. wei, Q. Zhang, Z. Fan, F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494–11502.
[123] Y. Tang, Y. Liu, W. Guo, T. Chen, H. Wang, S. Yu, F. Gao, Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance, J. Phys. Chem. C 118 (2014) 24866–24876.
[124] J. W. Lee, T. Ahn, D. Soundararajan, J. M. Ko, J. D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/alpha-Ni(OH)2 hybrid composites and their high capacitance behavior, Chem. Commun. 47 (2011) 6305–6307.
[125] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density, Adv. Funct. Mater. 22 (2012) 2632–2641.
[126] X. Zhu, H. Dai, J. Hu, L. Ding, L. Jiang, Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors, J. Power Sources 203 (2012) 243–249.
[127] W. Lv, F. Sun, D. M. Tang, H. T. Fang, C. Liu, Q. H. Yang, H. M. Cheng, A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance, J. Mater. Chem. 21 (2011) 9014–9019.
[128] J. Zhang, H. Liu, P. Shi, Y. Li, L. Huang, W. Mai, S. Tan, X. Cai, Growth of nickel (111) plane: the key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite, J. Power Sources 267 (2014) 356–365.
[129] B. Zhao, J. Song, P. Liu, W. Xu, T. Fang, Z. Jiao, H. Zhang, Y. Jiang, Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors, J. Mater. Chem. 21 (2011) 18792–18798.
[130] M. E. Plonska-Brzezinska, D. M. Brus, A. Molina-Ontoria, L. Echegoyen, Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes, RSC Adv. 3 (2013) 25891–25901.
[131] M. H. Kim, J. W. Lee, S. M. Parka, K. C. Roh, Electrochemical characteristics of nickel hydroxide activated carbon nano composite for supercapacitors, J. Ceram. Process. Res. 13 (2012) s265–s269.
[132] H. Cheng, A. D. Su, S. Li, S. T. Nquyen, L. Lu, C. Y. H. Lim, H. M. Duong, Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications, Chem. Phys. Lett. 601 (2014) 168–173.
[133] M. Hakamada, A. Moriguchi, M. Mabuchi, Fabrication of carbon nanotube/NiOx(OH)y nanocomposite by pulsed electrodeposition for supercapacitor applications, J. Power Sources 245 (2014) 324–330.
[134] Y. F. Liu, G. H. Yuan, Z. H. Jiang, Z. P. Yao, M. Yue, Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors, J. Alloy. Compd. 618 (2015) 37–43.
[135] M. S. Wu, H. H. Hsieh, Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors, Electrochim. Acta, 53 (2008) 3427–3435.
[136] V. Srinivasan, J. W. Weidner, Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration, J. Electrochem. Soc. 147 (2000) 880–885.
[137] E. E. Kalua, T. T. Nwoga, V. Srinivasan, J. W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide, J. Power Sources 92 (2001) 163–167.
[138] T. Brousse, D. Belanger, J. W. Long, To be or not to be pseudocapacitive, J. Electrochem. Soc. 162 (2015) A5185–A5189.
[139] B. Mani, J. P. D. Neufville, Dehydration of chemically and electrochemically impregnated nickel hydroxide electrodes, J. Electrochem. Soc. 135 (1988) 800–803.
[140] X. H. Liu, X. H. Luo, S. X. Lu, J. C. Zhang, W. L. Cao, A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion, J. Colloid Interf. Sci. 307 (2007) 94–100.
[141] J. G. Moo, B. Khezri, R. D. Webster, M. Pumera, Graphene oxides prepared by Hummers', Hofmann's, and Staudenmaier's methods: dramatic influences on heavy-metal-ion adsorption, ChemPhysChem 15 (2014) 2922–2929.
[142] H. Bode, K. Dehmelt, J. Witte, Zur kenntnis der nickelhydroxidelektrode – I. Über das nickel (II)-hydroxidhydrat, Electrochim. Acta 11 (1966) 1079–1087.
[143] J. H. Kim, K. Zhu, Y. Yan, C. L. Perkins, A. J. Frank, Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays, Nano Lett. 10 (2010) 4099–4104.
[144] G. S. Gund, D. P. Dubal, S. B. Jambure, S. S. Shinde, C. D. Lokhande, Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties, J. Mater. Chem. A 1 (2013) 4793–4803.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw