進階搜尋


下載電子全文  
系統識別號 U0026-0907201318174900
論文名稱(中文) 金屬-介電質波導陣列之表面電漿子空間震盪現象研究
論文名稱(英文) Spatial Oscillations of Surface plasmon in metal-dielectric waveguide arrays
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 許瑞成
研究生(英文) Ruei-Cheng Shiu
學號 l78991136
學位類別 博士
語文別 英文
論文頁數 72頁
口試委員 口試委員-郭光宇
口試委員-江海邦
口試委員-劉威志
口試委員-張瑞麟
指導教授-藍永強
中文關鍵字 布拉格震盪  陣列波導  表面電漿波  曾納穿隧 
英文關鍵字 Bloch oscillations  Waveguide arrays  Surface plasmon  Zener tunneling 
學科別分類
中文摘要 在我們的研究中,透過數值模擬與理論解析呈現表面電漿布洛赫震盪於同心圓金屬-介電質導波管陣列內,而且利用光學保角映射可將同心圓結構轉換成等效的矩形導波管結構,因同心圓結構半徑使該矩形導波管具有空間與材料特性的梯度;震盪週期與入射波長具正比關係,但震盪振幅並不隨入射波長而改變。此外我們也利用數值模擬與理論解析呈現表面電漿曾納穿隧效應在金屬-介電質導波管陣列,因為第一與第二能帶之間的能隙位置處於布里淵區中心位置,所以表面電漿曾納穿隧效應發生於入射位置,此特性與於介電質波導陣列內的光學曾納穿隧效應完全不同;而且借電常數的梯度與穿隧機率之間的關係與曾納穿隧理論吻合,因此可以確定此現象為金屬-介電質導波管陣列內的表面電漿曾納穿隧效應。最後,針對穿隧之後的波作探討,提出布洛赫-曾納震盪,並透過數值模擬與理論解析可得知布洛赫-曾納震盪具有圓形震盪軌跡,透過改變具有借電常數梯度的介電質層厚度,整個旋轉震盪就能被決定往後、往前甚至原地旋轉;介電質層厚度增加會使往右位移增加與往左位移減少,而整體的移動方向也能定義縱向的等效折射率。
英文摘要 This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal–dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam.However, the amplitude of oscillation is almost independent of wavelength.Besides, we elucidate plasmonicZener tunneling (PZT) in metal–dielectric waveguide arrays (MDWAs) by using numerical simulations and theoretical analyses. PZT in MDWAs occurs at the waveguide entrance and wherever the beam completes Bloch oscillations, because the bandgap between the first and second bands is minimal at the center of the first Brillouin zone. This feature significantly differs from that of optical Zener tunneling in dielectric waveguide arrays. The dependence of the simulated tunneling rate on the gradient of the relative permittivity of the dielectric layers correlates with the tunneling theory, thus confirming the occurrence of PZT in MDWAs. Finally, this work investigates plasmonic Bloch–Zener oscillation and beam curling in metal–dielectric waveguide arrays (MDWAs) using numerical simulations and theoretical analyses. The beam generated by plasmonicZener tunneling undergoes a plasmonic Bloch oscillation in the second band of MDWAs and becomes curled. Changing the width and the relative-permittivity gradient of the dielectric layers causes this curled beam to move backward, forward, or even unmoved. Increasing thewidth and the relative-permittivity gradient of the dielectric layers increases the rightward displacement and reduces the leftward displacement. The direction of motion of the curled beam is determined by the net longitudinal displacement.
論文目次 論文合格證明 I
中文摘要 II
Abstract III
誌謝 V
Contents VI
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1-1 Dispersion relation of metals 1
1-2 Insulator-Metalstructure and ImpedanceMatched Layer 4
1-3 Insulator-Metal-InsulatorandMetal-Insulator-Metal structure 9
1-4 History review: surface plasmons wave in waveguide arrays 11
1-5 History review: transformation optics 23
1-6 Numerical method: Finite-Difference Time-Domain 27
1-7 References 31
Chapter 2 Plasmonic Bloch oscillations in cylindrical metal–dielectric waveguide arrays 36
2-1 Introduction 36
2-2 Geometric model and simulation method 36
2-3 Optical conformal mapping and dispersion relation 37
2-4 Hamiltonian optics 38
2-5 Metal loss and lossless in Plasmonic Bloch oscillations 39
2-6 Results and discussion (for different wavelength) 40
2-7 Results and discussion (for different incident angle) 43
2-8 Results and discussion (for different incident radius) 45
2-9 Conclusions 47
2-10 References 47
Chapter 3 PlasmonicZener tunneling in metal–dielectric waveguide arrays 50
3-1 Introduction 50
3-2 Geometric model and simulation method 50
3-3 Dispersion relation and Hamiltonian optics 52
3-4 Results and discussion 53
3-5 Conclusions 57
3-6 References 58
Chapter 4 Plasmonic Bloch-Zener oscillation in metal-dielectric waveguide arrays 60
4-1 Introduction 60
4-2 Geometric model and simulation method 61
4-3 Hamiltonian optical and prediction of trajectory 62
4-4 Results and discussion 63
4-5 Conclusions 69
4-6 References 70
參考文獻 [1.1] Hecht, Eugene. Optics 4th. (2002).
[1.2] E. N. Economou, Phys. Rev. 182(2), 539 (1969).
[1.3] C. C. Chao, S. H. Tu, C. M. Wang, H. I. Huang, C. C. Chen and J. Y. Chang, Plasmonics, DOI 10.1007/s11468-009-9114-2, (2009).
[1.4] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72(7), 075405 (2005).
[1.5] X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, Phys. Rev. Lett. 97, 073901 (2006)
[1.6] H. Shin and S. Fan, Appl. Phys. Lett. 89, 151102 (2006)
[1.7] C. Yan, D. H. Zhang, Y. Zhang, D. Li, and M. A. Fiddy, Optics Express, 18 (14), 14794-14801 (2010)
[1.8] X. Fan and G. P. Wang, Opt. Lett. 31, 1322 (2006).
[1.9] T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002)
[1.10] Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett. 99, 153901 (2007)
[1.11] W. Lin, X. Zhou, and G. P. Wang, Appl. Phys. Lett. 91, 243113 (2007)
[1.12] A. R. Davoyan, A. A. Sukhorukov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. A 79, 013820-8 (2009).
[1.13] A. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov,and Y. S. Kivshar, Optics Express, 16 (5), 3299 (2008)
[1.14] A. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Appl. Phys. Lett. 91, 243113 (2007)
[1.15] W. Lin and L. Chen, J. Opt. Soc. Am. B 27, 112–117(2010).
[1.16] C. M. d. Sterke and J. E. Sipe, Opt. Lett. 16, 1141 (1991).
[1.17] G. Lenz, I. Talanina, and M. d. Sterke, Phys. Rev. Lett.83, 963-966 (1999).
[1.18] X. Kang and Z. Wang, Opt Commun282, 355 (2009)
[1.19] S. Longhi, Phys. Rev. Lett. 101, 193902 (2008).
[1.20] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, Phys. Rev. Lett. 96, 023901 (2006)
[1.21] R. C. Shiu and Y. C. Lan, Opt. Lett. 36, 4179 (2011).
[1.22] R. C. Shiu, Y. C. Lan, and C. M. Chen, Opt. Lett. 36, 4012 (2010).
[1.23] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fanv, Phys. Rev. Lett. 103, 033902 (2009)
[1.24] G. D. Valle and S. Longhi, Opt. Lett. 35, 673 (2010).
[1.25] J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006)
[1.26] I. Siddiqi and J. Clarke, Science 313, 1400 (2006)
[1.27] U. Leonhardt and T. Tyc, Science 323, 110 (2009)
[1.28] A. V. Kildishev and V. M. Shalaev, Opt. Lett. 33, 43 (2008).
[1.29] M. Heiblum and J. H. Harris, IEEE J. Quantum Electron. 11,75 (1975).
[1.30] Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, Nano Lett.10, 1991 (2010)
[1.31] Z. Liag and J. Li, Optics Express, 19 (18), 16821 (2011)
[1.32] N. I. Landy and W. J. Padilla, Optics Express, 17 (17), 14872 (2009)
[1.33] A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, Phys. Rev. B 82, 125430 (2010)
[1.34] A. Aubry, D. Y. Lei, A. I. Ferna´ndez-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, Nano Lett. 10, 2574–2579 (2010)
[1.35] D. Y. Lei, A. Aubry, S. A. Maier and J. B. Pendry, New J.Phys. 12, 093030 (2010)
[1.36] A. Aubry, D. Y. Lei, Stefan A. Maier, and J. B. Pendry, Phys. Rev. B 82, 205109 (2010)
[1.37] A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, Phys. Rev. Lett. 105, 233901 (2010)
[1.38] A. Aubry, D. Y. Lei, S. A. Maier, J. B. Pendry, ACS Nano 5, 3293 (2011)
[1.39] D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, ACS Nano 5, 3293 (2011)
[1.40] N. I. Zheludev, Science 328, 582 (2010)
[1.41] K. S. Yee, IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966)
[1.42] Taflove, A., and S. C. Hagness. "Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2005." Artech House, Norwood, MA.
[1.43] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[2.1] S. Longhi (2009), “Quantum-optical analogies using photonic structures,” Laser Photon. Rev. 3, 243.
[2.2] C. M. de Sterke, J. E. Sipe, and L. A. Weller-Brophy (1991), “Electromagnetic Stark ladders in waveguide geometries,” Opt. Lett. 16, 1141.
[2.3] T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer (1999), “Optical Bloch Oscillations in Temperature Tuned Waveguide Arrays,” Phys. Rev. Lett. 83, 4752.
[2.4] R. Morandotii, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg(1999), “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83, 4756.
[2.5] V. Agarwal, J. A. de Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil (2004), “Photon Bloch Oscillations in Porous Silicon Optical Superlattices,” Phys. Rev. Lett. 92, 097401.
[2.6] F. Bloch (1929), Z. Phys. 52, 555.
[2.7] G. Nenciu (1991), “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians,” Rev. Mod. Phys. 63, 91.
[2.8] R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar (2009), “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105.
[2.9] W. Lin, X. Zhou, and G. P. Wang (2007), “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113.
[2.10] G. Lenz, I. Talanina, and C. M. de Sterke (1999), “Bloch Oscillations in an Array of Curved Optical Waveguides,” Phys. Rev. Lett. 83, 963.
[2.11] Z. Jacob, L. V. Alekseyev, and E. Narimanov (2007), “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52.
[2.12] E. E. Narimanov and A. V. Kildishev (2009), “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106.
[2.13] Y. Huang, Y. Feng, and T. Jiang (2007), “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133-11141.
[2.14] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson (2010), “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687.
[2.15] M. Heiblum and J. H. Harris (1975), “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75.
[2.16] U. Leonhardt (2006), “Optical Conformal Mapping,” Science 312, 1777.
[2.17] J. B. Pendry, D. Schuring, and D. R. Smith (2006), “Controlling Electromagnetic Fields,” Science 312, 1780.
[2.18] Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang (2010), “Transformational Plasmon Optics,” Nano Lett. 10, 1991.
[2.19] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fanv (2009), “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic MetallicWaveguide Array,” Phys. Rev. Lett. 103, 033902.
[2.20] J. A. Arnaud (1976), Beam and Fiber Optics, New York: Academic Press.
[2.21] X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan (2006) , “All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration,” Phys. Rev. Lett. 97, 073901.
[3.1] F. Bloch (1928), Z. Phys. 52, 555.
[3.2] G. Nenciu (1991), “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians,” Rev. Mod. Phys. 63, 91.
[3.3] C. M. de Sterke and J. E. Sipe (1991), “Electromagnetic Stark ladders in waveguide geometries,” Opt. Lett. 16, 1141.
[3.4] T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer (1999), “Optical Bloch Oscillations in Temperature Tuned Waveguide Arrays,” Phys. Rev. Lett. 83, 4752.
[3.5] R. Morandotii, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg(1999), “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Phys. Rev. Lett. 83, 4756.
[3.6] V. Agarwal, J. A. de Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil (2004), “Photon Bloch Oscillations in Porous Silicon Optical Superlattices,” Phys. Rev. Lett. 92, 097401.
[3.7] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel (2006), “Visual Observation of Zener Tunneling,” Phys. Rev. Lett. 96, 023901.
[3.8] S. Longhi (2008), “Optical Bloch Oscillations and Zener Tunneling with Nonclassical Light,” Phys. Rev. Lett. 101, 193902.
[3.9] F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, and A. Tünnermann (2009), “Bloch-Zener Oscillations in Binary Superlattices,” Phys. Rev. Lett. 102, 076802.
[3.10] C. Zener (1934), “A Theory of the Electrical Breakdown of Solid Dielectrics,” Proc. R. Soc. London A 145, 523.
[3.11] R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar (2009), “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105.
[3.12] W. Lin, X. Zhou, and G. P. Wang (2007), “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113.
[3.13] R. C. Shiu, Y. C. Lan, and C. M. Chen (2010), “Plasmonic Bloch oscillations in cylindrical metal–dielectric waveguide arrays,” Opt. Lett. 35, 4012.
[3.14] W. Lin, Y. Gu, and G. P. Wang (2008), “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118.
[3.15] J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park (2008), “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars,” Appl. Phys. Lett. 93, 221111.
[3.16] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson (2010), “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687.
[3.17] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fanv (2009), “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic MetallicWaveguide Array,” Phys. Rev. Lett. 103, 033902.
[4.1] R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar (2009), “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105.
[4.2] W. Lin, X. Zhou, and G. P. Wang (2007), “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113.
[4.3] R. C. Shiu, Y. C. Lan, and C. M. Chen (2010), “Plasmonic Bloch oscillations in cylindrical metal–dielectric waveguide arrays,” Opt. Lett. 35, 4012.
[4.4] R. C. Shiu and Y. C. Lan (2011), “Plasmonic Zener tunneling in metal–dielectric waveguide arrays,” Opt. Lett. 36, 4179.
[4.5] X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[4.6] H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer (2006), “Bloch Oscillations and Zener Tunneling in Two-Dimensional Photonic Lattices,” Phys. Rev. Lett. 96, 053903.
[4.7] S. Longhi (2008), “Optical Bloch Oscillations and Zener Tunneling with Nonclassical Light,” Phys. Rev. Lett. 101, 193902.
[4.8] F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte and A. Tünnermann (2009), “Bloch-Zener Oscillations in Binary Superlattices,” Phys. Rev. Lett. 102, 076802.
[4.9] M. J. Zheng, Y. S. Chan, and K. W. Yu (2011), “Photonic Bloch–dipole–Zener oscillations in binary parabolic optical waveguide arrays,” J. Opt. Soc. Am. B 28, 1339.
[4.10] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson (2010), “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687.
[4.11] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fanv (2009), “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic MetallicWaveguide Array,” Phys. Rev. Lett. 103, 033902.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw