進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907201317590500
論文名稱(中文) 氮化鋁表面改質及應用於複合材料之研究
論文名稱(英文) Surface treatment of AlN powder and its application in high thermal conductivity composite materials
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 陳建廷
研究生(英文) Chien-Ting Chen
學號 N36004157
學位類別 碩士
語文別 中文
論文頁數 114頁
口試委員 指導教授-鍾賢龍
口試委員-郭炳林
口試委員-許志雄
口試委員-謝承佑
中文關鍵字 氮化鋁  粒徑大小  表面改質  複合材料  矽氧烷偶合劑 
英文關鍵字 Aluminum nitride  particle size  surface treatment  composite  silane coupling agent 
學科別分類
中文摘要 本論文主要分為兩大部份:氮化鋁表面改質與高導熱氮化鋁複合材料製備。氮化鋁之主要應用之一是用來做為高導熱填充材,在克服水解性質上,表面改質的研究多著重在小粒徑部分,但大粒徑粉體於複合材料的熱傳導表現,比起小粒徑粉體要來得出色。為了使氮化鋁在複合材料的應用上粒徑範圍更加寬廣,本論文表面改質實驗以大粒徑粉體為主。由於大粒徑粉體表面活性低,相較於小粒徑粉體較不容易進行反應,在室溫下使用磷酸改質其抗水解效果比小粒徑者差,而需在高溫下進行反應才能獲得與小粒徑相當之抗水解效果,本研究也進一步找出理想的表面改質磷酸添加量。在氮化鋁複合材料的研究方面,主要目的在於提升其熱傳導值,本論文研究了下列對複合材料熱傳導之影響:(1)氮化鋁之氧含量,(2)氮化鋁之粒徑大小,(3)氮化鋁之填充量,(4)添加矽氧烷偶合劑,(5)氮化鋁與氮化硼雙成分填充材之添加。就粉體填充量上,吾人發現須在一定的填充量時才能使熱傳導值有顯著的提升。在偶合劑之影響方面,吾人探討了3-Aminopropyltriethoxysilane (APTS),3-Glycidoxypropyltrimethoxysilane(GPTS),3-(Trime
thoxysilyl)propylmethacrylate(MPTS)等三種改質劑,發現APTS之效果為佳,吾人認為APTS能有效降低氮化鋁與環氧樹脂之間不連續面,增進其親和性,因而具提升熱傳導值之效能。此外,吾人同時檢測探討不同改質劑對氮化鋁抗濕性之影響。吾人同時發現氧含量與粒徑大小對熱傳導值之影響程度隨粒徑增大而下降。在雙成分填充料的研究方面,吾人發現在一定的氮化鋁/氮化硼混合比例下能有效的提高熱傳導值。
英文摘要 This thesis is divided into two main parts: aluminum nitride surface modification and high thermal conductivity aluminum nitride composites. One of the main applications of aluminum nitride is used as a high thermal conductivity filler in the composite. By overcoming the hydrolysis properties, many research is focus on the small diameter section of surface modification, but the thermal conductivity performance of large powder size is better than small particle size powder. In order to extend its application in different particle size in the composite, the experiment of surface modification is mainly focus on the large particle size. Due to the low surface activity of large particle size powder, it is not easy to react with phosphoric acid at room temperature. It is necessary to enhance the reaction temperature to achieve the same effect as the small particle size, and further, to find out the ideal amount of phosphoric acid to add in the surface treatment reaction. On the aluminum nitride composite research, the main purpose is to enhance the value of the thermal conductivity. This thesis do the following study that effect the thermal conductivity of composite:(1) Oxygen content of aluminum nitride (2) Particle size of aluminum nitride (3) Amount of the filler of aluminum nitride (4) Amount of silane coupling agent (5) Hybrid fillers system of aluminum nitride and boron nitride. From the experiment, the effect of the factors which influence the thermal conductivity will be apparent at a certain amount of filler .On the effect of coupling agent, there are three kind of agents:(1) 3-Aminopropyltriethoxysilane(APTS)、(2) 3-Glycidoxypr-opyltrimethoxysilane(GPTS)、(3) 3-(Trimethoxysilyl)propyl-
methacrylate(MPTS), the one treated by APTS can effectively reduce the discontinuities interfaces between the epoxy and aluminum nitride powder to enhance the affinity between them, simultaneously, to study the effect of anti-moisture of aluminum nitride which treated by these coupling agent. The effect of particle size and oxygen content on the thermal conductivity will decrease as the particle size increased. On the hybrid fillers system research, it is found that can effectively improve the thermal conductivity values at a certain aluminum nitride / boron nitride mixing ratio
論文目次 中文摘要 III
英文摘要 V
誌謝 VII
目錄 VIII
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1-1 氮化鋁簡介 1
1-2 氮化鋁物理與化學性質 3
1-3 氮化鋁合成簡介 5
第二章 基礎理論與文獻回顧 9
2-1 氮化鋁水解性質 9
2-2 氮化鋁複合材料 12
2-2-1 複合材料簡介 12
2-2-2 熱傳導機制簡介 13
2-2-3 熱傳導模型簡介 14
2-2-4 矽氧烷偶合劑簡介 17
2-3文獻回顧 20
2-3-1文獻回顧之表面改質 20
2-3-2文獻回顧之複合材料 24
第三章 實驗方法 28
3-1 實驗藥品 28
3-2實驗儀器 29
3-3實驗分析測試儀器與測試方法 30
3-3-1實驗分析測試儀器 30
3-3-2實驗測試方法 34
3-4 實驗流程 35
3-4-1 表面改質實驗步驟 36
3-4-2 複合材料實驗步驟 36
第四章 氮化鋁表面改質 40
4-1氮化鋁分析 40
4-1-1氮化鋁粒徑分布與表面型態 40
4-1-2氮化鋁水解測試 42
4-1-3 不同粒徑氮化鋁水解測試 47
4-2磷酸表面改質 49
4-2-1 磷酸改質之ESCA檢測 51
4-2-2 磷酸改質之不同粒徑氮化鋁粉體 55
4-2-3 磷酸改質之反應時間影響 56
4-2-4 磷酸改質之反應溫度影響 59
4-2-5 磷酸改質之添加量影響 64
第五章 氮化鋁複合材料 67
5-1 氮化鋁複合材料分析與基本性質比較 67
5-1-1氮化鋁複合材料實驗分析 67
5-1-2氮化鋁填充量對熱傳導影響 68
5-1-3氮化鋁氧含量對熱傳導影響 70
5-1-4 氮化鋁粒徑大小對熱傳導影響 72
5-2矽氧烷偶合劑改質氮化鋁製備複合材料 75
5-2-2 矽氧烷偶合劑表面改質之熱傳導影響 84
5-2-3 APTS表面改質於不同添加量之熱傳導影響 87
5-2-4矽氧烷偶合劑表面改質之吸濕性測試 89
5-3 雙成分填充之複合材料 92
5-3-1 氮化鋁與氮化硼粒徑大小對熱傳導影響比較 93
5-3-2填充量與粒徑對氮化鋁/氮化硼雙成分填充材影響 95
5-3-3 雙成分填充材添加比例影響與SEM型態觀察 104
第六章 結論 107
參考文獻 109
附錄 114
參考文獻 [1] T. J. Mroz, "Aluminum Nitride," American Ceramic Society Bulletin," vol. 71, p. 782, 1992.
[2] H. T. N. Kuramoto and I. Aso, "Sintering and Properties of High-Purity AlN Ceramics," 1998.
[3] G. A. S. and J. W. S. M. P. Borom, Ceram. Bull., vol. 51, p. 11, 1972.
[4] R. A. T. G. A. Slack, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids," vol. 48, pp. 641-647, 1987.
[5] A. C. F. Y. E. Man, vol. 26, pp. 19-54, 1994.
[6] 汪建民, "陶瓷材料手冊," 中華民國科技發展協進會, 1994.
[7] L. S. G. Selvaduray, "Aluminum Nitride - Review of Synthesis Methods," Materials Science and Technology, vol. 9, pp. 463-473, 463-473.
[8] F. J. M. Haussonne, "Review of the Synthesis Methods for Aln," Materials and Manufacturing Processes," Materials Science and Technology, vol. 10, pp. 717-755, 1995.
[9] A. G. M. and I. P. Borovinskaya, "New Class of Combustion Processes," Combustion Science and Technology, vol. 10, pp. 195-201, 1975.
[10] J. F. Crider, "Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials,"Ceramic Engineering and Science Proceedings, vol. 3, p. 519, 1982.
[11] S. Kumar, "Self-propagating high temperature synthesis of refractory nitrides, carbides and borides," Key Engineering Materials, vol. 56-57, pp. 183-188, 1991.
[12] A. G. M. and I. P. Borovins, "Self-Spreading High-Temperature Synthesis of Refractory Inorganic Compounds," Doklady Akademii Nauk Sssr, vol. 201, p. 366, 1972.
[13] Z. A. Munir, "Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods," American Ceramic Society Bulletin, vol. 67, pp. 342-349, Feb 1988.
[14] 劉益嘉, "燃燒合成氮化鋁粉體之量產製程開發," 國立成功大學碩士論文, 2011.
[15] 陳煥煜, "使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討," 國立成功大學碩士論文, 2011.
[16] T. H. S. Fukumoto and H. Tsubakino, "Hydrolysis behavior of aluminum nitride in various solutions," Journal of Materials Science," vol. 35, pp. 2743-2748, 2000.
[17] 謝承佑, "氮化鋁粉體水解性質探討與抗濕技術開發," 國立成功大學碩士論文, 2002.
[18] T. K. Kristoffer Krnel, "Aqueous Processing of AlN Powder," Materials Science Forum," Materials Science Forum, vol. vol. 554, pp. 189-196, 2007.
[19] C. S. Patrick Judeinstein, "Hybrid organic-inorganic materials: a land of multidisciplinarity," Journal of Materials Chemistry, vol. 6, pp. 511-525, 1996.
[20] G. A. M, D. P. H. Hasselman1, "Specimen Size Effect of the Thermal Diffusivity/Conductivity of Aluminum Nitride," Journal of the American Ceramic Society, vol. 72, pp. 967-971, 1989.
[21] J. W. D. Callister, "Materials Science and Engineering: An Introduction," vol. 4th, 1999.
[22] P. D. Thacher, "Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF," Physical Review, vol. 156, pp. 975-988, 1967.
[23] J. B. W. Kim, I. Choi and Y. Kim, "Thermally Conductive EMC (Epoxy Molding Compound)for Microelectronic Encapsulation," pPolym. Eng. Sci., vol. 39, p. 756, 1999.
[24] H. K. B, W. D. Kingery, and D. R. Uhlmann, "Introduction to Ceramics, Chapter 12," John Wiley & Sons, 1976.
[25] Y. Nagai and G. C. Lai, "Thermal Conductivity of Epoxy Resin Filled withParticulate Aluminum Nitride Powder," J. Ceram. Soc. Jpn., vol. 105, pp. 197-200, 1997.
[26] Y. Agari and T. Uno, "Estimation on Thermal Conductivities of Filled Polymers," J. Appl. Polym. Sci., vol. 32, pp. 5705-5712, 1986.
[27] S. M. L, E. S. Lee, D. J. Shanefieldz and W. R. Cannonw, "Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin," J. Am. Ceram. Soc.,, vol. 91, pp. 1169-1174, 2008.
[28] S. K. L. Mittal, "Silanes and Other Coupling Agents: VSP," 2009.
[29] Y. S. M. Egashira, Y. Takao, R. Yamaguchi, and Y. Ishikawa, "Effect of Carboxylic-Acid Adsorption on the Hydrolysis and Sintered Properties of Aluminum Nitride Powder," Journal of the American Ceramic Society, vol. 77, pp. 1793-1798, 1994.
[30] T. Qiu, J. Xu and Y. Q. Li, "Effect of thermal oxidation treatment in air on the hydrolysis of AlN powder " Materials Research Bulletin, vol. 32, pp. 1173-1179, 1997.
[31] A. Ceylan, "Process for protection of aluminum nitride powder against hydrolysis with sodium tripolyphosphate as dispersant," Advances in Applied Ceramics, vol. 109, pp. 373-376, 2010.
[32] T. K. K. Krnel, "Reactivity of aluminum nitride powder in dilute inorganic acids," Journal of the American Ceramic Society, vol. 83, pp. 1375-1378, 2000.
[33] M. Oliveira, S. Olhero, J. Rocha and J. M. F. Ferreira, "Controlling hydrolysis and dispersion of AlN powders in aqueous media," Journal of Colloid and Interface Science, vol. 261, pp. 456-463, 2003.
[34] W. K. J. W. Bae, S. H. Cho and S. H. Lee, "The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution," Journal of materials science, vol. 35, pp. 5907-5913, 2000.
[35] J. K. S. Choi, "Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers," Composites Part B: Engineering, vol. 51, pp. 140-147, 2013.
[36] Y. H. W. C. Aijie Ma and G. Zhang, "The Preparation and Cure Kinetics Researches of Thermal Conductivity Epoxy/AlN Composites," Polymer-Plastics Technology and Engineering, vol. 49, pp. 354-358, 2010.
[37] D. D. L. C., Y. S. Xu and C. Mroz, "Thermally conducting aluminum nitride polymer-matrix composites,," Composites Part a-Applied Science and Manufacturing, vol. 32, pp. 1749-1757, 2001.
[38] H. M. Liao, R. N. S. and T. W. Coyle, "Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung excited Auger electron spectroscopy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 11, pp. 2681-2686, 1993.
[39] C. R. A. F. M., D. A. J. C. Sanchez-Lopez, "The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition," NanoStructured Materials, vol. 11, pp. 249-257, 1999.
[40] 林宏儒, "氮化鋁表面改質及高導熱複合材料製成開發," 國立成功大學碩士論文, 2012.
[41] 許倍華, "氮化鋁粉體的表面改質技術開發," 國立成功大學碩士論文, 2011.
[42] T. K. K. Krnel and J. Eur., Ceram. Soc. , vol. 21, p. 2075, 2001.
[43] G. S. B. Baur, J. Hernando, O. Purrucker, M. Tanaka, B. Nickel, and M. E. M. Stutzmann, "Chemical functionalization of GaN and AlN surfaces," Applied Physics Letters, vol. 87, 2005.
[44] P. Jiang and X. Huang "A Review of Dielectric PolymerComposites With High Thermal Conductivity," Toshikatsu Tanaka, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw