進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907201315295100
論文名稱(中文) 電極表面修飾與疊層式元件設計於染料敏化太陽能電池之研究
論文名稱(英文) Surface modifications on the photoelectrode and the design of tandem configurations in dye-sensitized solar cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 江怡芳
研究生(英文) Yi-Fang Chiang
學號 L78961084
學位類別 博士
語文別 英文
論文頁數 126頁
口試委員 指導教授-郭宗枋
指導教授-陳昭宇
口試委員-何國川
口試委員-傅耀賢
召集委員-黃榮俊
口試委員-許進恭
中文關鍵字 延長生命週期  固態染料敏化太陽能電池  雙面透光  沒有色差  疊層式電池 
英文關鍵字 Extension lifetime  Solid-state dye-sensitized solar cells  Bifacial sides illumination  Non-color distortion  Tandem cells 
學科別分類
中文摘要 本論文主要分成三大部分,第一部分為探討延長液態染料敏化太陽能電池生命週期的可行性,藉由重複使用光電極以降低重新製作光電極的成本;第二部分為沉積透明導電薄膜(銦錫氧化物)於固態染料敏化太陽能電池,形成一雙面透光的固態元件,接著研究此元件由不同入射面照光後的光電特性;第三部分藉由外部電路並聯連接兩個雙面透光固態染料敏化太陽能電池,並利用調控TiO2的膜厚,製作一無色差的疊層式固態染料敏化太陽能電池。
本文的第一部分首先觀察經由不同pH值的溶液對已吸附染料的二氧化鈦光電極表面處理後,其染料吸附/脫附/再吸附的光學性質;與分析探討此元件經由吸附/脫附後對其光電轉換效率的影響。實驗結果顯示經由染料吸附/脫附過程中,染料吸附量與開路電壓皆有提升進而提高整體元件的光電轉換效率。透過表面分析與載子傳輸特性研究,我們證實了開路電壓的提升為在二氧化鈦/染料/電解液介面間,形成一層更緻密的染料吸附層,有效地抑制二氧化鈦中的電子與電解液再復合過程。因此,若經由長期使用染料敏化太陽能電池後,此研究有利於了解如何延長液態染料敏化太陽能電池生命週期,且有效提高其光電轉換效率。
本文的第二部分為利用濺鍍法成功製備透明的銦錫氧化物 (indium-tin-oxide, ITO) 薄膜當作對電極應用在固態染料敏化太陽能電池。這是第一次利用雙面透明的電極可以從雙面照光。我們發現從ITO照光的元件,電流耗損是造成元件效率偏低的因素。此結果乃因為ITO吸收了短波長的入射光和電洞傳輸層(hole transport material, HTM)侷限了短波長的入射光。此結果證明了可應用於大面積的固態染料敏化太陽能電池製作且開啟了可應用於疊層式太陽能電池的可能性。
本文的第三部分為利用外部電路並聯方式連接兩雙面透光的固態染料敏化太陽能電池,藉由選擇兩種對可見光光譜有互補吸光的染料,調控二氧化鈦厚度,達到對可見光吸收強度一致,以形成一沒有色差的疊層式固態染料敏化太陽能電池。此結果開啟此透光、沒有色差的疊層式元件結構結合太陽能窗應用於建築物整合太陽光電系統中的可能性。
英文摘要 This thesis is divided into three parts: firstly, the feasibility of extending the lifetime of liquid-state dye-sensitized solar cells (LSDSCs) and reducing the costs of re-conditioning LSDSCs by recycling the FTO/TiO2 substrates was proposed; secondly, we focuses on the manufacturing processes of a transparent conductive oxide, indium tin oxide, in the solid-state DSCs (SSDSCs), which forms a bifacial transparent SSDSC. Afterwards, we evaluate the photovoltaic performance of SSDSCs when irradiated from FTO and ITO side; thirdly, the bifacial tandem SSDSC with two spectrally complementary sensitizers using parallel-connection is reported. Furthermore, we control the TiO2 thickness to obtain a non-color distortion tandem SSDSC.
In the first part of this thesis, the various cycles of dye uptake and rinse off processes using the solutions with different pH values are studied and characterized. Then, the optical properties of the dyed TiO2 substrate and the photovoltaic performances of the LSDSCs are tested. The results showed that dye adsorption and open-circuit voltage (Voc) are significantly increased after multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. With surface analysis and charge transport characteristics, we found the enhanced Voc are due to increased dye loading and dense packing of dye molecules at the TiO2/dye/electrolyte interface that suppresses dark current. Thus, this work elucidates the phenomenon on the extension of LSDSCs lifetime by multiple dye adsorption/desorption after long-term operation.
In the second part of this thesis, we report solid state dye-sensitized solar cells (SSDSCs) made with a transparent indium-tin-oxide, ITO, film as counter electrodes using the sputtering technology. For the first time, a bifacial transparent SSDSC was realized and irradiated from FTO and ITO side. We characterized the photovoltaic performances for different side illumination and found a major loss of short-circuit current density (Jsc) when irradiated from ITO side. This result is because of the cut-off of incident photos in the blue region by the ITO film and the light screening effect by the oxidized hole transport material (HTM) absorption. Our results demonstrated the possibility of mass production scalable sputtering process for SSDSCs electrodes fabrication and paved the avenue for tandem design application which requires a transparent intermediate layer for interconnection.
In the third part of this thesis, we present a parallel-connection tandem SSDSC with the use of two bifacial transparent SSDSCs made of two complementary sensitizers in each individual sub-cell. We tune the TiO2 thicknesses to achieve the balanced absorption intensity of two sensitizers in the complementary absorption region, forming a non-color distortion tandem SSDSC. This results open up the possibility for a see-through and non-color distortion power-generating window in the building-integrated photovoltaics (BIPVs).
論文目次 中文摘要...................................................I
Abstract................................................III
誌謝.......................................................V
Table of Contents........................................VI
List of Tables...........................................XI
List of Figuress..........................................X
Chapter 1
Introduction..............................................1
1.1 The Challenge for Dye-sensitized Solar Cells..........1
1.2 Motivation and Objectives of This Study...............3
1.3 Scope of This Research................................4
Chapter 2
History and Operation Principles Review...................6
2.1 History of Photovoltaic...............................6
2.2 Photovoltaic Device Characterization..................9
2.3 Photoelectrochemical Cells...........................12
2.3.1 Photogalvanic cell.................................14
2.3.2 The device structure of dye-sensitized solar cells.15
2.3.3 Operation principle of dye-sensitized solar cells..17
Chapter 3
Experimental methods.....................................21
3.1 Introduction.........................................21
3.2 Materials............................................21
3.2.1 TCO glass..........................................21
3.2.2 Blocking layer.....................................22
3.2.3 TiO2 paste.........................................22
3.2.4 Sensitizers........................................23
3.2.5 Electrolyte........................................23
3.2.6 Hole transporting materials and additives..........24
3.2.7 Sputter targets....................................24
3.3 Device Fabrication...................................24
3.3.1 Liquid-state device................................25
3.3.2 Solid-state device.................................26
3.4 Characterization and Measurement.....................29
3.4.1 Electrical characterization and measurement........29
3.4.2 Optical characterization and measurement...........31
3.4.3 Morphology characterization and measurement........32
Chapter 4
Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process...............34
4.1 Introduction.........................................34
4.2 The Key Influence on the Long-term Stability in DSCs.34
4.2.1 The influence of electrolytes on long-term stability
in DSCs............................................36
4.2.2 The influence of sealant on long-term stability in
DSCs...............................................37
4.2.3 The influence of sensitizer on long-term stability in
DSCs...............................................37
4.3 Dye Adsorption/desorption Process through Various
Solution-treatment...................................40
4.4 Influence of Solution Treatment Process on Enhanced Dye
Adsorption...........................................47
4.4.1 Effect of dye adsorption mode......................47
4.4.2 Effect of surface energy and polarity..............48
4.4.3 Effect of surface morphology.......................50
4.5 Photovoltaic Performance of DSCs through Solution-
treatment............................................51
4.6 Influence of Solution Treatment Process on Photovoltaic
Performance of DSCs..................................53
4.6.1 Effect of cation and anion.........................53
4.6.2 Effect on the shift of TiO2 conduction band........55
4.6.3 Effect of interfacial recombination................56
4.7 Reliability of DSCs under Multiple Life Cycles.......62
4.8 The Dyeing Kinetics under Multiple Life Cycles.......64
4.9 Summary..............................................66
Chapter 5
Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode........68
5.1 Introduction.........................................68
5.2 Nanostructure and Morphology of SSDSCs Made with
Sputtered ITO Film as Counter Electrode..............69
5.3 Photovoltaic Properties of Two Sides Illumination for
SSDSCs with ITO Counter Electrode....................71
5.4 The optical properties of the sputtered ITO film and
the spectral response of two sides illumination for
SSDSCs...............................................73
5.5 Summary..............................................78
Chapter 6
Non-color distortion for visible light transmitted tandem solid state dye-sensitized solar cells...................79
6.1 Introduction.........................................79
6.2 Extension of the Spectra Response from Visible to Near
IR...................................................80
6.2.1 Tandem cells.......................................80
6.2.2 Co-sensitization...................................85
6.3 Nanostructure of the Top、Bottom、and Tandem Cells....86
6.4 The Optical Properties of the Top、Bottom、and Tandem
Cells................................................88
6.5 The Photovoltaic Characteristics of the Top、Bottom、
and Tandem Cells.................................... 90
6.6 The CIE Diagram of White Light Source Passed through
the T-SSDSC..........................................93
6.7 Summary..............................................95
Chapter 7
Conclusion and Future work...............................96
7.1 Conclusion...........................................96
7.2 Future work..........................................97
References...............................................98
Curriculum Vitae........................................106
Publication Papers......................................107
參考文獻 1. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. App. Phys. 25, 676 (1954).
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovoltaics: Res. and Appl. 18, 346 (2010).
3. A. Romeo, A. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, A. N. Tiwari, Prog. Photovoltaics: Res. and Appl. 12, 93 (2004).
4. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 3, 649 (2009).
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).
6. B. O'Regan, M. Grätzel, Nature 353, 737 (1991).
7. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grӓtzel, J. Am. Chem. Soc. 115, 6382 (1993).
8. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grӓtzel, J. Am. Chem. Soc. 123, 1613 (2001).
9. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011).
10. Z. Yu, N. Vlachopoulos, M. Gorlovb, L. Kloo, Dalton Trans. 40, 10289 (2011).
11. Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Grätzel, Adv. Funct. Mat. 18, 341 (2008).
12. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B 104, 2053 (2000).
13. S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 132, 16714 (2010).
14. G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, J. Phys. Chem. B 105, 6867 (2001).
15. T. Daeneke, T.-H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nat. Chem. 3, 211 (2011).
16. H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. B 105, 10461 (2001).
17. F. Cao, G. Oskam, P. Searson, J. Phys. Chem. 99, 17071 (1995).
18. A. F. Nogueira, M. A. D. Paoli, I. Montanari, R. Monkhouse, J. Nelson, J. R. Durrant, J. Phys. Chem. B 105, 7571 ( 2001).
19. W. A. Gazotti, A. F. Nogueira, E. M. Girotto, M. C. Gallazzi, M. A. D. Paoli, Synth. Met. 108, 151 (2000).
20. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Grӓtzel, J. Electrochem. Soc. 143, 3099 (1996).
21. K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, I. R. M. Kottegoda, K. G. U. Wijayantha, V. P. S. Perera, Semicond. Sci. Technol. 10, 1689 (1995).
22. B. O'Regan, D. Schwartz, Chem. Mater. 10, 1501 (1998).
23. J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.-W. Schmidt, D. Haarer, Synth. Met. 89, 215 (1997).
24. Q. Yu, C. Yu, F. Guo, J. Wang, S. Jiao, S. Gao, H. Li, L. Zhao, Energy & Enviro. Sci. 5, 6151 (2012).
25. K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Chem. Lett. 26, 471 (1997).
26. D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, Thin Solid Films 271, 403 (2002).
27. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395, 583 (1998).
28. I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Grätzel, M. D. McGehee, Adv. Funct. Mater. 19, 2431 (2009).
29. J.-H. Yum, P. Chen, M. Grätzel, M. K. Nazeeruddin, ChemSusChem 1, 699 (2008).
30. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 133, 18042 (2011).
31. O. Kohle, M. Grätzel, A. F. Meyer, T. B. Meyer, Adv. Mater. 9, 904 (1997).
32. M. Amirnasr, M. K. Nazeeruddin, M. Grätzel, Thermochim. Acta 348, 105 (2000).
33. H. G. Agrell, Sol. Energy 75, 169 (2003).
34. J.-H. Yum, R. Humphry-Baker, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, Nano Today 5, 91 (2010).
35. C. C. Chen, W. D. Jehng, L. L. Li, E. W.-G. Diau, J. Electrochem. Soc. 156, C304 (2009).
36. T. Beppu, Y. Kashiwa, S. Hayase, M. Kono, Y. Yamaguchi, Jan. J. Appl. Phys. 48, 061504 (2009).
37. M.-W. Park, K.-Y. Chun, J.-S. Lee, D.-J. Kwak, Y.-M. Sung, Y.-T. Hyun, Electron. Mater. Lett. 5, 109 (2009).
38. A. E. Becquerel, C. R. Acad. Sci. 9, 561 (1839).
39. W. Smith, Nature 7, 303 (1873).
40. W. G. Adams, R. E. Day, Philos. T. 167, 313 (1876).
41. W. G. Adams, R. E. Day, Proc. Roy. Soc. A25, 113 (1887).
42. J. Moser, Monatsh. Chem. 8, 373 (1887).
43. H. Gerischer, H. R. Schoppel, B. Pettinge, J. Electrochem. Soc. 119, C230 (1972).
44. R. Memming, F. Schroppel, Chem. Phys. Lett. 62, 207 (1979).
45. R. Memming, F. Schroppel, U. Bringmann, J. Electroanal. Chem. 100, 307 (1979).
46. H. Tsubomura, M. Matsumura, Y. Nomur, T. Amamiya, Nature 261, 402 (1976).
47. K. Tennakone, K. P. Hewaparakkrama, M. Dewasurendra, A. H. Jayatissa, L. K. Weerasena, Semicond. Sci. Technol. 3, 382 (1988).
48. H. Gerischer, Electroanal. Chem. Interf. Electrochem. 58, 263 (1975).
49. W. J. Albery, M. D. Archer, Nature 270, 399 (1977).
50. K. M. Gantotri, C. Lal, Int. J. Energy Res. 24, 365 (2004).
51. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grӓtzel, J. Am. Chem. Soc. 127, 16835 (2005).
52. M. Grӓtzel, Nature 414, 338 (2001).
53. V. K. Thorsmølle, B. Wengera, J. Teuscher, C. Bauer, J.-E. Moser, Chimia 61, 631 (2007).
54. J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M. Grӓtzel, U. Bach, Appl. Phys. Lett. 79, 2085 (2001).
55. H. J. Snaith, M. Grӓtzel, Appl. Phys. Lett. 89, 262114 (2006).
56. L. Kavan, M. Grätzel, Electrochim. Acta 40, 643 (1995).
57. A. Burke, L. Schmidt-Mende, S. Ito, M. Grätzel, Chem. Commun. 234 (2007).
58. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
59. B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares, J. R. Durrant, J. Phys. Chem. B 109, 4616 (2005).
60. B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, J. R. Durrant, J. Phys. Chem. B 110, 17155 (2006).
61. J. Fahrenfort, Spectrochem. Acta 17, 698 (1961).
62. M. Grӓtzel, C. R. Chimie 9, 578 (2006).
63. E. Figgemeier, A. Hagfeldt, Int. J. Photoenergy 6, 127 (2004).
64. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, M. Grӓtzel, Nature Mater. 8, 626 (2008).
65. B. Macht, M. Turrion, A. Barkschat, P. Salvador, K. Ellmer, H. Tributsch, Sol. Energy Mater. Sol. Cells 73, 163 (2002).
66. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, Prog. Photovoltaics: Res. and Appl. 9, 425 (2001).
67. B. Muthuraaman, S. Murugesan, V. Mathew, S. Ganesan, B. Paul, J. Madhavan, P. Maruthamuthu, S. Suthanthiraraj, Sol. Energy Mater. Sol. Cells 92, 1712 (2008).
68. R. Kern, N. V. D. Burg, G. Chmiel, J. Ferber, G. Hasenhindl, A. Hinsch, R. Kinderman, J. Kroon, A. Meyer, T. Meyer, R. Niepmann, J. V. Roosmalen, C. Schill, P. Sommeling, M. Spӓth, I. Uhlendorf, Opto-Electron. Rev. 8, 284 (2000).
69. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, J. M. Kroon, J. Photoch. Photobio. A 164, 137 (2004).
70. R. Grűnwald, H. Tributsch, J. Phys. Chem. B 101, 2564 (1997).
71. G. Xue, Y. Guo, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu, Z. Zou, Int. J. Electrochem. Sci. 7, 1496 (2012).
72. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004).
73. D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. C. Sun, Chem. Commun. 2245 (2006).
74. Y. Wu, W. Zhu, Chem. Soc. Rev. 42, 2039 (2013).
75. C. C. Chen, X. Z. Li, W. H. Ma, J. C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 106, 318 (2002).
76. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2, 402 (2003).
77. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells 77, 89 (2003).
78. Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N.-G. Park, K. Kim, W. I. Lee, Adv. Mater. 21, 3668 (2009).
79. S. Kambe, K. Murakoshi, T. Kitamura, Y. Wada, S. Yanagida, H. Kominami, Y. Kera, Sol. Energy Mater. Sol. Cells 61, 427 (2000).
80. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107, 8981 (2003).
81. Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 21, 4272 (2005).
82. F. Hirose, K. Kuribayashi, M. Shikaku, Y. Narita, Y. Takahashi, Y. Kimura, M. Niwano, J. Electrochem. Soc. 156, B987 (2009).
83. C. P. León, L. Kador, B. Peng, M. Thelakkat, J. Phys. Chem. B 110, 8723 (2006).
84. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc. 125, 475 (2003).
85. S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen, X.-Z. Zhao, J. Power Sources 182, 119 (2008).
86. Y. Kim, C.-H. Yoon, K.-J. Kim, Y. Lee, J. Vac. Sci. Technol. A 25, 1219 (2007).
87. Y. Kim, B. J. Yoo, R. Vittal, Y. Lee, N.-G. Park, K.-J. Kim, J. Power Sources 175, 914 (2008).
88. P. A. Connor, K. D. Dobson, A. J. McQuillan, Langmuir 15, 2402 (1999).
89. P. Qu, G. J. Meyer, Langmuir 17, 6720 (2001).
90. C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, G. J. Meyer, Langmuir 15, 7047 (1999).
91. L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes, M. Grätzel, ChemPhysChem 10, 1117 (2009).
92. X.-T. Zhang, I. Sutanto, T. Taguchi, K. Tokuhiro, Q.-B. Meng, T. N. Rao, A. Fujishima, H. Watanable, T. Nakamori, M. Uragami, Sol. Energy Mater. Sol. Cells 80, 315 (2003).
93. B. C. O'Regan, J. R. Durrant, P. M. Sommeling, N. J. Bakker, J. Phys. Chem. C 111, 14001 (2007).
94. S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, Chem. Commun. 4351 (2005).
95. Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945 (2005).
96. C. Longo, A. F. Nogueira, M. A. D. Paoli, H. Cachet, J. Phys. Chem. B 106, 5925 (2002).
97. C.-W. Chang, C. K. Chou, I.-J. Chang, Y.-P. Lee, E. W.-G. Diau, J. Phys. Chem. C 111, 13288 (2007).
98. L. Luo, C.-F. Lo, C.-Y. Lin, I. J. Chang, E. W.-G. Diau, J. Phys. Chem. B 110, 410 (2006).
99. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 38, 6298 (1999).
100. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, ACS Nano 4, 6032 (2010).
101. I. Bruder, M. Karlsson, F. Eickemeyer, J. Hwang, P. Erk, A. Hagfeldt, J. Weis, N. Pschirer, Sol. Energy Mater. Sol. Cells 93, 1896 (2009).
102. S. H. Kim, N.-M. Park, T. Kim, G. Sung, Thin Solid Films 475, 262 (2005).
103. J. M. Blocher Jr., Thin Solid Films 77, 51 (1981).
104. Y. Han, D. Kim, J.-S. Cho, S.-K. Koh, Y. S. Song, Sol. Energy Mater. Sol. Cells 65, 211 (2001).
105. M. Fujinaka, A. A. Berezin, Thin Solid Films 101, 7 (1983).
106. G. L. Harding, B. Window, Sol. Energy Mater. 20, 367 (1990).
107. P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, T. X. Zhou, J. Appl. Phys. 87, 3080 (2000).
108. H. Chen, C. Qiu, M. Wong, H. S. Kwok, IEEE Electron Device Lett. 24, 315 (2003).
109. U. Bach, Ph. D. Thesis, EPFL, Lausanne (2000).
110. J. Bisquert, D. Cahen, G. Hodes, S. Rűhle, A. Zaban, J. Phys. Chem. B 108, 8106 (2004).
111. L. M. Peter, Phys. Chem. Chem. Phys. 9, 2630 (2007).
112. L. M. Peter, J. Phys. Chem. C 111, 6601 (2007).
113. H. J. Snaith, Adv. Mater. 19, 3643 (2007).
114. H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, M. Grätzel, Nano Lett. 7, 3372 (2007).
115. K. Carl, H. Schmitt, I. Friedrich, Thin Solid Films 295, 151 (1997).
116. A. V. Mudryi, A. V. Ivaniukovich, A. G. Ulyashin, Thin Solid Films 515, 6489 (2007).
117. L.-J. Meng, M. P. D. Santos, Thin Solid Films 303, 151 (1997).
118. S. Bhagwat, R. P. Howson, Surf. Coat. Technol. 111, 163 (1999).
119. T. Y. Y. Fung, H. Yang, Energy and Build. 40, 341 (2008).
120. J. L. H. Chau, R.-T. Chen, G.-L. Hwang, P.-Y. Tsai, C.-C. Lin, Sol. Energy Mater. Sol. Cells 94, 588 (2010).
121. N. Yamada, K. Kanno, K. Hayashi, T. Tokimitsu, Opt. Express 19, A649 (2011).
122. M. Biancardo, K. Taira, N. Kogo, H. Kikuchi, N. Kumagai, N. Kuratani, I. Inagawa, S. Imoto, J. Nakata, Sol. Energy 81, 711 (2007).
123. T. Miyazaki, A. Akisawa, T. Kashiwagi, Renew. Energy 30, 281 (2005).
124. S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang, J. Park, Building Environ. 46, 1899 (2011).
125. G. L. Moreira, D. Z. B. Verónica, R. H. Aguilar, M. A. Magalheãs, Energy & Enviro. Sci. 1, 655 (2008).
126. Y.-F. Chiang, C.-H. Tsai, P. Chen, T.-F. Guo, Sol. Energy 86, 1967 (2012).
127. S. K. Balasingam, M. Lee, M. G. Kang, Y. Jun, Chem. Commun. 49, 1471 (2013).
128. J. He, H. Lindstrӧm, A. Hagfeldt, S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 62, 265 (2000).
129. I. Hod, Z. Tachan, M. Shalom, A. Zaban, Phys. Chem. Chem. Phys. 15, 6339 (2013).
130. A. Nakasa, H. Usami, S. Sumikura, S. Hasegawa, T. Koyama, E. Suzuki, Chem. Lett. 34, 500 (2005).
131. P. Qin, H. Zhu, T. Edvinsson, G. Boschloo, A. Hagfeldt, L. Sun, J. Am. Chem. Soc. 130, 8570 (2008).
132. P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, L. Sun, Adv. Mater. 21, 2993 (2009).
133. A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y.-B. Cheng, A. Mishra, P. Bäuerle, U. Bach, Nature Mater. 9, 31 (2010).
134. S. Powar, T. Daeneke, M. T. Ma, D. Fu, N. W. Duffy, G. Götz, M. Weidelener, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, Angew. Chem. 125, 630 (2013).
135. P. Liska, K. R. Thampi, M. Grӓtzel, D. Brémaud, D. Rudmann, H. M. Upadhyaya, A. N. Tiwari, Appl. Phys. Lett. 88, 203103 (2006).
136. M. Murayama, T. Mori, J. Phys. D: Appl. Phys. 40, 1664 (2007).
137. J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Grӓtzel, J. R. Durrant, J. Am. Chem. Soc. 126, 5670 (2004).
138. K.-M. Lee, Y.-C. Hsu, M. Ikegami, T. Miyasaka, K. R. J. Thomas, J. T. Lin, K.-C. Ho, J. Power Sources 196, 2416 (2011).
139. D. Kuang, P. Walter, F. Nűesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grӓtzel, Langmuir 23, 10906 (2007).
140. Z. Xuea, L. Wang, B. Liu, Nanoscale 5, 2269 (2013).
141. Y.-L. Lee, Y.-S. Lo, Adv. Funct. Mat. 19, 604 (2009).
142. N. Zhou, Y. Yang, X. Huang, H. Wu, Y. Luo, D. Li, Q. Meng, ChemSusChem 6, 687 (2013).
143. M. Yanagida, N. Onozawa-Komatsuzaki, M. Kurashige, K. Sayama, H. Sugihara, Sol. Energy Mater. Sol. Cells 94, 297 (2010).
144. S.-Q. Fan, B. Fang, H. Choi, S. Paik, C. Kim, B.-S. Jeong, J.-J. Kim, J. Ko, Electrochim. Acta 55, 4642 (2010).
145. A. Hadipour, B. D. Boer, P. W. M. Blom, Org. Electron. 9, 617 (2008).
146. P. Maycock, Sol. Energy Mater. Sol. Cells 47, 37 (1997).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw