進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907201011061500
論文名稱(中文) 內生性的Interferon-inducible protein 10降低腸病毒七十一型感染老鼠的死亡率
論文名稱(英文) Absence of Interferon-inducible protein 10 increases enterovirus 71 lethality in mice
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 98
學期 2
出版年 99
研究生(中文) 蔡佳純
研究生(英文) Chia-Chun Tsai
學號 s4697102
學位類別 碩士
語文別 英文
論文頁數 38頁
口試委員 口試委員-余俊強
指導教授-陳舜華
口試委員-齊嘉鈺
中文關鍵字 腸病毒七十一型  細胞趨素  干擾素誘導蛋白 
英文關鍵字 enterovirus 71  interferon-inducible protein 10 
學科別分類
中文摘要 腸病毒七十一型感染常在嬰幼兒引發重症,症狀包括無菌性腦膜炎、腦幹腦炎及急性肢體麻痺,並伴隨肺水腫及心肺衰竭等併發症,造成病人死亡。即使病人從重症恢復,也常會有神經性後遺症。然而,目前腸病毒七十一型感染的致病機轉仍不清楚。報導指出在腸病毒七十一型重症病人的血漿及腦脊髓液中,細胞趨化素濃度有上升的趨勢。其中干擾素誘導蛋白-10的濃度有顯著性的增加,並與疾病的嚴重程度呈正相關。然而目前尚無研究針對干擾素誘導蛋白-10,在腸病毒七十一型感染時扮演的角色予以說明。因此在本篇研究中,我們利用幼鼠感染模式,探討干擾素誘導蛋白-10的功能及角色。研究結果顯示感染後的幼鼠和沒感染的幼鼠相比較,血清及腦中內生性干擾素誘導蛋白-10皆有顯著的增加,這和臨床上重症病人所偵測到的情形一致。另外,干擾素誘導蛋白-10的濃度和組織中的病毒量及感染幼鼠的死亡率呈正相關。之後,我們利用干擾素誘導蛋白-10的基因缺陷鼠,更進一步探討它在感染所扮演的角色。結果顯示感染之後基因缺陷鼠的死亡率比野生型鼠高出45%,且後肢癱瘓的情況也顯著比野生型鼠嚴重。除此之外,基因缺陷鼠的組織病毒量也高於野生型鼠,特別在中樞神經系統中達顯著差異。實驗中,在老鼠神經細胞株感染腸病毒七十一型後,不管有無外加干擾素誘導蛋白-10,並不影響細胞中所測得的病毒量。顯示干擾素誘導蛋白-10在體外試驗中並無直接抗病毒的作用。先前研究指出干擾素誘導蛋白-10可吸引免疫細胞到發炎的位置,特別是活化後的T細胞及自然殺手細胞。因此,我們利用流式細胞儀測定脾臟及腦中免疫細胞的數量。在感染後,基因缺陷鼠脾臟及腦中的CD4+ T 細胞、 CD8+ T 細胞及 B 細胞的平均數目,皆比野生型鼠低,特別是在脾臟中有統計上的差異。除此之外,文獻亦指出干擾素-γ誘導單核細胞因子(monokine induced by gamma interferon,Mig)及單核球趨化蛋白-1(monocyte chemotactic protein-1,MCP-1)的濃度在腸病毒七十一型重症病人身上,也會隨著疾病嚴重程度而增加。而我們的結果顯示,在基因缺陷鼠的血清及腦中,上述兩種細胞趨化素的濃度皆低於野生型鼠。說明在缺乏干擾素誘導蛋白-10的情況下,這兩種細胞趨化素並無代償性的增加,反而減少其分泌量。综合以上的結果,本篇研究中干擾素誘導蛋白-10的缺乏,會減少發炎位置的免疫細胞數量,同時也增加了組織中的病毒量,進而提高感染腸病毒七十一型的幼鼠死亡率。
英文摘要 Enterovirus 71 (EV71) has induced fatal encephalitis in hundreds of thousands of young children in the Asia-Pacific region in the past decade. The levels of several chemokines in the plasma and cerebrospinal fluid of infected patients with brain stem encephalitis are elevated. Among these chemokines, the level of interferon-gamma-inducible protein (IP)-10 is shown to positively correlate with the disease severity. The role of IP-10 in EV71 infection is still unknown. Therefore, we used a mouse infection model to address this issue. Results revealed that IP-10 protein was induced in the brain and serum of infected mice with levels positively correlated with tissue viral loads and death rates. To investigate the role of IP-10 in EV71 infection, we compared the survival rates of wild-type mice and IP-10-deficient (IP-10-/-) mice after infection. The survival rate of wild-type mice was significantly higher than that of IP-10-/- mice by 45 %. In addition, we harvested the organs of infected mice to determine viral loads. The mean viral titers in most organs of IP-10-/- mice were higher than those of wild-type mice, with significant differences found in the central nervous system. To study the interaction between IP-10 and EV71, we treated IP-10 and control medium in infected mouse neuronal cells to detect the difference of viral titers. Our result showed that IP-10 did not have direct antiviral effect in vitro. IP-10 is a potent chemoattractant for activated T cells and NK cells, so we quantified these cells in infected tissues by flow cytometry. The mean numbers of CD4+ T cells, CD8+ T cells, and B cells in the spleens and brains of wild-type mice were higher than those of IP-10-/- mice with significant differences found in the spleens. Additionally, the levels of another two chemokines, monokine induced by gamma interferon (Mig) and monocyte chemotactic protein-1 (MCP-1) which are increased in EV71-infected patients with brain stem encephalitis, were reduced in IP-10-/- mice compared to wild-type mice. Collectively, our results show that the absence of IP-10 increases the lethality of EV71-infected mice with reduced leukocyte influx and elevated viral loads in tissues.
論文目次 Chinese abstract…………………………………………………………3
English abstract………………………………………………………….5
Acknowledgement……………………………………………………….6
Figure contents………………………………………………………… .9
Introduction…………………………………………………………….10
Materials and methods………………………………………………...14
Results…………………………………………………………………..17
Discussion……………………………………………………………….22
References………………………………………………………………25
Figures…………………………………………………………………..30
參考文獻 1. McMinn, P.C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS. Microbiol. Rev. 26, 91-107 (2002).
2. Chang, L.Y. Enterovirus 71 in Taiwan. Pediatr. Neonatol. 49, 103-112 (2008).
3. Chen, C.S., et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J. Virol. 81, 8996-9003 (2007).
4. Ong, K.C., et al. Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J. Neuropathol. Exp. Neurol. 67, 532-542 (2008).
5. Lin, T.Y., et al. The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management. Clin. Infect. Dis. 34 Suppl 2, S52-57 (2002).
6. Schmidt, N.J., Lennette, E.H. & Ho, H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 129,304-309 (1974).
7. Gilbert, G.L., et al. Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr. Infect. Dis. J 7, 484-488
(1988).
8. Shindarov, L.M., et al. Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J.
Hyg. Epidemiol. Microbiol. Immunol. 23, 284-295 (1979).
9. Shimizu, H., et al. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr. Int. 46, 231-235 (2004).
10. Lee, M.S. & Chang, L.Y. Development of enterovirus 71 vaccines. Expert. Rev.Vaccines 9, 149-156 (2010).
11. Ho, M., et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N. Engl. J. Med. 341, 929-935 (1999).
12.http://nidss.cdc.gov.tw/singledisease.aspxpt=s&dc=1&dt=3&disease=0749.2010).
13. Wang, S.M., et al. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin. Infect. Dis.
29, 184-190 (1999).
14. Shieh, W.J., et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerg. Infect. Dis. 7, 146-148 (2001).
15. Wang, S.M., et al. Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J. Infect. Dis.
198, 1002-1006 (2008).
16. Chang, L.Y., et al. Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatr. Res. 60, 466-471 (2006).
17. Larrubia, J.R., Benito-Martinez, S., Calvino, M., Sanz-de-Villalobos, E. & Parra-Cid, T. Role of chemokines and their receptors in viral persistence and liver
damage during chronic hepatitis C virus infection. World J. Gastroenterol. 14,7149-7159 (2008).
18. Gangur, V., Birmingham, N.P. & Thanesvorakul, S. Chemokines in health and disease. Vet. Immunol. Immunopathol. 86, 127-136 (2002).
19. Dufour, J.H., et al. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol.168, 3195-3204 (2002).
20. Gottlieb, A.B., Luster, A.D., Posnett, D.N. & Carter, D.M. Detection of a gamma interferon-induced protein IP-10 in psoriatic plaques. J. Exp. Med. 168, 941-948(1988).
21. Luster, A.D. & Ravetch, J.V. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J. Exp. Med. 166, 1084-1097 (1987).
22. Molesworth-Kenyon, S.J., Oakes, J.E. & Lausch, R.N. A novel role for neutrophils as a source of T cell-recruiting chemokines IP-10 and Mig during the DTH response to HSV-1 antigen. J. Leukoc. Biol. 77, 552-559 (2005).
23. Carr, D.J., Chodosh, J., Ash, J. & Lane, T.E. Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J. Virol. 77,
10037-10046 (2003).
24. Chen, J.P., et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to
cell surface heparan sulfate. J. Immunol. 177, 3185-3192 (2006).
25. Liu, M.T., et al. The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J. Immunol. 165, 2327-2330
(2000).
26. Yuan, J., et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ. Res. 104, 628-638(2009).
27. Wuest, T.R. & Carr, D.J. Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection. J.
Immunol. 181, 7985-7993 (2008).
28. Thapa, M., Welner, R.S., Pelayo, R. & Carr, D.J. CXCL9 and CXCL10 expression are critical for control of genital herpes simplex virus type 2 infection through
mobilization of HSV-specific CTL and NK cells to the nervous system. J. Immunol.180, 1098-1106 (2008).
29. Walsh, K.B., et al. Expression of CXC chemokine ligand 10 from the mouse hepatitis virus genome results in protection from viral-induced neurological and liver disease. J. Immunol. 179, 1155-1165 (2007).
30. Trifilo, M.J., et al. CXC chemokine ligand 10 controls viral infection in the central nervous system: evidence for a role in innate immune response through recruitment
and activation of natural killer cells. J. Virol. 78, 585-594 (2004).
31. Lindell, D.M., Lane, T.E. & Lukacs, N.W. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic
cell and CD8(+) T cell efficacy. Eur. J. Immunol. 38, 2168-2179 (2008).
32. Ip, P.P. & Liao, F. Resistance to dengue virus infection in mice is potentiated by
CXCL10 and is independent of CXCL10-mediated leukocyte recruitment. J.Immunol. 184, 5705-5714 (2010).
33. Christensen, J.E., et al. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine
cascade. J. Immunol. 182, 1079-1087 (2009).
34. Harvey, C.E., et al. Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and
lobular inflammation. J. Leukoc. Biol. 74, 360-369 (2003).
35. Kolb, S.A., et al. Identification of a T cell chemotactic factor in the cerebrospinal
fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J.Neuroimmunol. 93, 172-181 (1999).
36. Li, Z.H., et al. Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J. Infect. Dis. 197, 854-857 (2008).
37. Lin, Y.W., et al. Lymphocyte and antibody responses reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. J. Virol. 83, 6477-6483 (2009).
38. Wang, Y.F., et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J. Virol. 78, 7916-7924 (2004).
39. Michalec, L., et al. CCL7 and CXCL10 orchestrate oxidative stress-induced neutrophilic lung inflammation. J. Immunol. 168, 846-852 (2002).
40. Christensen, J.E., et al. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J. Neurosci. 24, 4849-4858 (2004).
41. Cheeran, M.C., et al. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J. Neurovirol. 7,
135-147 (2001).
42. Lin, A.A., Tripathi, P.K., Sholl, A., Jordan, M.B. & Hildeman, D.A. Gamma interferon signaling in macrophage lineage cells regulates central nervous system
inflammation and chemokine production. J. Virol. 83, 8604-8615 (2009).
43. Yoon, H.A., et al. Modulation of immune responses induced by DNA vaccine expressing glycoprotein B of Pseudorabies Virus via coadministration of IFN-gamma-associated cytokines. J. Interferon Cytokine Res. 26, 730-738 (2006).
44. Askarieh, G., et al. Systemic and intrahepatic interferon-gamma-inducible protein 10 kDa predicts the first-phase decline in hepatitis C virus RNA and overall viral response to therapy in chronic hepatitis C. Hepatology 51, 1523-1530 (2010).
45. Reiberger, T., et al. IP-10 correlates with hepatitis C viral load, hepatic inflammation and fibrosis and predicts hepatitis C virus relapse or non-response in
HIV-HCV coinfection. Antivir. Ther. 13, 969-976 (2008).
46. Chen, H.L., Hung, C.H., Tseng, H.I. & Yang, R.C. Plasma IP-10 as a predictor of serious bacterial infection in infants less than 4 months of age. J. Trop. Pediatr. 55,
103-108 (2009).
47. Tang, N.L., et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute
respiratory syndrome. Clin. Chem. 51, 2333-2340 (2005).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw