進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0902201813574300
論文名稱(中文) 綠色磨潤多功能複合薄膜材料製備及磨潤特性研究
論文名稱(英文) Preparation and Tribological Properties of Green Lubricant Composite Coating
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 1
出版年 107
研究生(中文) 白錫城
研究生(英文) SHIA SENG PEK
學號 n16045010
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-施士塵
口試委員-蘇演良
口試委員-林震銘
中文關鍵字 羥丙基甲基纖維素  奈米顆粒  二硫化鉬  磨耗機制 
英文關鍵字 hydroxypropyl methylcellulose  nanoparticles  MoS2  third body 
學科別分類
中文摘要 為提升綠色磨潤材料,hydroxypropyl methylcellulose (HPMC)/ molybdenum disulfide (MoS2)複合塗層的抗磨耗效果,本研究將奈米尺度的金屬及金屬氧化物顆粒添加入HPMC/MoS2複合溶液中,並以微管滴定與溶液蒸發法,製備HPMC/MoS2/奈米顆粒複合塗層。透過對奈米複合塗層的成份與結構和磨耗試驗的分析,討論複合塗層的磨潤性質與磨耗機制。
在本研究中透過掃描式電子顯微鏡對奈米複合塗層的表面形貌與組織結構、磨耗試驗後的磨痕形貌進行觀測以及對複合塗層的鍍膜厚度進行量測,並使用X-射線繞射分析儀分析複合塗層中二硫化鉬及奈米顆粒的晶體結構與晶面方向,使用磨耗試驗機進行摩擦係數鑑定並搭配三維鐳射共聚焦顯微鏡以及運用三體理論的概念對複合塗層進行磨潤性質及磨耗機制的分析。
受益於HPMC的分散效果,奈米顆粒與二硫化鉬微米顆粒能夠均勻的分佈於複合塗層中,並藉由奈米顆粒高表面積對體積比的特點,在添加量少的情況下,奈米顆粒將曝露且密布於複合塗層表面,使得聚合物表面的尖峰與低谷,呈現較大的起伏,促使表面粗糙度的提高,且由於體積密度較低,使得複合塗層的厚度會隨著顆粒含量的不同而變化,在本實驗中的複合塗層亦不受基板效應的影響,適中的厚度能夠避免鉻鋼球與玻璃基板的相互作用,隨著奈米顆粒的加入,複合塗層硬度的提升,使複合塗層具備更佳的承受負載能力。
實驗結果顯示,添加入奈米顆粒後,能夠大幅度的降低摩擦係數及減少複合塗層的磨耗量。奈米顆粒在磨耗過程中以優良的三體形態存在於磨痕軌跡中,協調兩摩擦物體之間的速度差異,並具有轉移負載的能力,當顆粒被推出磨耗軌跡後,複合塗層表面間作用力增強,會導致再次產生第三體顆粒,顆粒磨耗作用在摩擦過程中不斷發生,能有效抵抗鉻鋼球的應力作用。
以三體理論的觀點,不同的界面層間可能發生四種不同的速度協調模式,當奈米金屬顆粒添加入複合塗層後,在複合塗層S5層面展現出細小碎屑顆粒凝聚後形成第一體層所誘發的M3剪切滑移及顆粒滾動聚集成球狀或棒狀在磨耗中以M4的模式,來協調界面層間速度梯度的差異,更值得關注的時,金屬氧化物複合塗層展現的又是不一樣的磨耗機制,作為高硬度的陶瓷類顆粒,複合塗層不易受剪切作用影響,而是複合塗層的部分S5層面具有M2模式的破裂行為,不同的速度協調模式將在本研究中得以觀察並分析之。
在本實驗概念中,不僅只是討論奈米顆粒添加入複合塗層後的效果,亦探討二硫化鉬的流動作用,二硫化鉬的剪切分層作用及其優良的潤濕性是促使轉移層形成的關鍵因素,二硫化鉬分層後,碎屑會再凝聚的流動性質使其能夠與複合塗層上的碎屑凝聚形成厚實的第三體層,在磨耗過程中與轉移層進行摩擦作用時,達到自潤滑的效果。
總體來說,本實驗在達到降低摩擦和磨耗的同時,亦關注於奈米顆粒及二硫化鉬在磨耗過程中所扮演的角色,以實驗所觀測到的資訊及固有的理論知識,對磨耗行判斷,並提出合理的磨耗機制。
英文摘要 Hydroxypropyl methylcellulose (HPMC) composites modified with nanoparticles and molybdenum disulfide (MoS2) were prepared by solvent evaporated method and microtubule titration. The nanoparticles were Al, Cu, Al2O3 and CuO. The tribological behavior of nanoparticles and MoS2 were investigated using ball-on-disk tribometer at a sliding speed of 0.03 m/s, normal load 2N and counterface roughness of 0.08 μm Ra. The surface morphologies and worn surfaces were observed with scanning electron microscopy. The preferred orientation and crystallographic structure of MoS2 and nanoparticles in the composites were studied by X-ray diffraction. Energy-dispersive X-ray spectroscopy were used to analyze the transfer film formed on the counterball. The surface profile, wear depth, wear width and wear volume were studied by 3D Optical Profiler.
The synergistic effect of micro-platelet MoS2 and nanoparticles led to the excellent wear resistances. It was found that the wear volume of HPMC/ MoS2 composites decreased dramatically when Al, Cu and CuO were used as fillers and decreased slightly with Al2O3, The optimal wear resistance was obtained with 5 wt% Al, 2 wt% Cu, 2wt% CuO or 1 wt% Al2O3. These filled composites had the coefficient of friction lower than unfilled HPMC/MoS2. Nanoparticles existed in the wear track as third particles improved the load bearing capacitiy of the composites. The wear mechanism of the composites was discussed in term of the worn surfaces and analysis of transfer film with third body concept.
論文目次 口試合格證明 I
摘要 II
Extended Abstract IV
誌謝 XI
總目錄 XII
表目錄 XV
圖目錄 XVI
第1章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 2
1-2-1 綠色磨潤學 2
1-2-2 羥丙基甲基纖維素 5
1-2-3 二硫化鉬 7
1-2-4 聚合物奈米複合材料 14
1-3 本文架構 15
第2章 相關理論 16
2-1 三體理論 16
2-1-1 三體理論的概念 16
2-1-2 摩擦三體結構 17
2-1-3 速度協調機制 18
2-1-4 三體摩擦循環流動 21
2-1-5 第三體形貌 22
2-2 影響磨潤性質之表面粗糙參數 25
2-3 影響聚合物磨潤性質之轉移層 29
第3章 實驗儀器與步驟 31
3-1 實驗材料 31
3-2 實驗架構 33
3-3 實驗方法與步驟 34
3-3-1 基板前處理 34
3-3-2 奈米複合塗層製備與實驗參數 35
3-3-3 化學成分分析方法 38
3-3-4 組織結構和表面幾何性質分析方法 39
3-3-5 磨耗試驗與分析 40
3-4 實驗設備 42
第4章 實驗結果與討論 44
4-1 奈米複合塗層性質分析 44
4-1-1 複合塗層XRD 分析 44
4-1-2 組織結構與表面形貌 50
4-1-3 複合塗層膜厚分析 59
4-1-4 表面粗糙度 63
4-2 HPMC/MoS2複合塗層磨耗試驗結果討論 66
4-3 HPMC/MoS2/Al複合塗層磨潤性質分析 67
4-3-1 奈米鋁複合塗層摩擦係數及磨耗量 67
4-3-2 奈米鋁複合塗層磨痕SEM圖及輪廓 69
4-3-3 奈米鋁複合塗層磨耗試驗結語與摩擦機制推論 71
4-4 HPMC/MoS2/Cu複合塗層磨潤性質分析 73
4-4-1 奈米銅複合塗層摩擦係數及磨耗量 73
4-4-2 奈米銅複合塗層磨痕SEM圖及輪廓 75
4-4-3 奈米銅複合塗層磨耗試驗結語與摩擦機制推論 77
4-5 HPMC/MoS2/Al2O3複合塗層磨潤性質分析 79
4-5-1 奈米氧化鋁複合塗層摩擦係數及磨耗量 79
4-5-2 奈米氧化鋁複合塗層SEM圖及輪廓 81
4-5-3 奈米氧化鋁複合塗層磨耗試驗結語與摩擦機制推論 83
4-6 HPMC/MoS2/CuO複合塗層磨潤性質分析 85
4-6-1 奈米氧化銅複合塗層摩擦係數與磨耗量 85
4-6-2 奈米氧化銅複合塗層磨痕SEM圖及輪廓 87
4-6-3 奈米氧化銅複合塗層磨耗試驗結語與摩擦機制推論 89
4-7 磨耗過程的熱效應判斷 96
第5章 結論與展望 101
5-1 綜合討論 101
5-2未來展望與建議 104
參考文獻 105

參考文獻 [1] S. Zhang, Green tribology: Fundamentals and future develop-ment. Friction, 1(2013) pp.186-194.
[2] M. Nosonovsky, and B. Bhushan, Green Tribology, Springer (2014).
[3] O. Kharissova, H. Dias, B. Kharisov, B. Pérez and V. Pérez, The greener synthesis of nanoparticles. Trends in Biotechnology, 31(2013) pp.240-248.
[4] S. Kaviya, J. Santhanalakshmi and B. Viswanathan, Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity. Journal of Nano-technology, (2011) pp.1-5.
[5] S. Alves, B. Barros, M. Trajano, K. Ribeiro and E. Moura, Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65(2013) pp.28-36.
[6] L. Quinchia, M. Delgado, T. Reddyhoff, C. Gallegos and H. Spikes, Tribological studies of potential vegetable oil-based lubricants con-taining environmentally friendly viscosity modifiers. Tribology Inter-national, 69(2014) pp.110-117.
[7] V. Rastogi and P. Samyn, Bio-Based Coatings for Paper Applica-tions. Coatings, 5(2015) pp.887-930.
[8] S. Shi and T. Huang, Raman study of HPMC biopolymer transfer layer formation under tribology test. Optical and Quantum Electronics, 48 (2016)
[9] J. Siepmann and N. Peppas, Modeling of drug release from delivery sys-tems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 64 (2012) pp.163-174.
[10] M. de Moura, F. Aouada, R. Avena-Bustillos, T. McHugh, J. Krochta and L. Mattoso, Improved barrier and mechanical properties of novel hydroxy-propyl methylcellulose edible films with chitosan/tripolyphosphate na-noparticles. Journal of Food Engineering, 92(2009) pp.448-453.
[11] A. Fahs, M. Brogly, S. Bistac and M. Schmitt, Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties. Carbohydrate Polymers, 80(2010) pp.105-114.
[12] S. Shi, T. Huang and J. Wu, Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate. Materials, 8(2015) pp.1738-1751.
[13] S. Shi, and F. Lu, Biopolymer Green Lubricant for Sustainable Manufac-turing. Materials, 9 (2016) p.338.
[14] S. Shi and T. Huang, Self-Healing Materials for Ecotribology. Materials, 10(2017) pp.91.
[15] S. Shi, J. Wu, and T. Huang, Raman, FTIR, and XRD study of MoS2 en-hanced hydroxypropyl methylcellulose green lubricant. Optical and Quantum Electronics, 48 (2016).
[16] S. Shi, J. Wu, T. Huang and Y. Peng, Improving the tribological perfor-mance of biopolymer coating with MoS 2 additive. Surface and Coatings Technology, 303(2016) pp.250-255.
[17] S. Shi, and J. Wu, MoS2 Additives for Enhancing Tribological Performance of Hydroxypropyl Methylcellulose Biopolymer. Smart Science, 5(2017) pp.167-172.
[18] T. Scharf and S. Prasad, Solid lubricants: a review. Journal of Materials Science, 48(2012) pp.511-531.
[19] K. Hu, X. Hu, Y. Xu, F. Huang and J. Liu, The Effect of Morphology on the Tribological Properties of MoS2 in Liquid Paraffin. Tribology Letters, 40 (2010) pp.155-165.
[20] K. Hu, X. Hu, J. Wang, Y. Xu and C. Han, Tribological Properties of MoS2 with Different Morphologies in High-Density Polyeth-ylene. Tribology Letters, 47 (2012) pp.79-90.
[21] M. Naffakh, A. Díez-Pascual, M. Remškar and C. Marco, New inor-ganic nanotube polymer nanocomposites: improved thermal, me-chanical and tribological properties in isotactic polypropylene incor-porating INT-MoS2. Journal of Materials Chemistry, 22(2012) pp.17002.
[22] J. Wang, K. Hu, Y. Xu and X. Hu, Structural, thermal, and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites. Journal of Applied Polymer Science, 110(2008) pp.91-96.
[23] S. Shi, Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2. Materials, 9 (2016) pp.856.
[24] R.L. Fusaro, Lubrication and failure mechanisms of molybdenum di-sulfide films I – effect ofatmosphere. NASA TP 1343(1978)
[25] S. Dvorak, K. Wahl and I. Singer, In Situ Analysis of Third Body Contributions to Sliding Friction of a Pb–Mo–S Coating in Dry and Humid Air. Tribology Letters, 28(2007) pp.263-274.
[26] G. Colas, A. Saulot, C. Godeau, Y. Michel and Y. Berthier, Decrypting third body flows to solve dry lubrication issue – MoS2 case study under ultrahigh vacuum. Wear, 305(2013) pp.192-204.
[27] W. Brostow, A. Buchman, E. Buchman and O. Olea-Mejia, Microhy-brids of metal powder incorporated in polymeric matrices: Friction, mechanical behavior, and microstructure. Polymer Engineering & Science, 48(2008) pp.1977-1981.
[28] O. Olea-Mejia, W. Brostow and E. Buchman, Wear Resistance and Wear Mechanisms in Polymer + Metal Composites. Journal of Nano-science and Nanotechnology, 10 (2010) pp.8254-8259.
[29] L. Yu, S. Yang, H. Wang and Q. Xue, An investigation of the friction and wear behaviors of micrometer copper particle- and nanometer copper particle-filled polyoxymethylene composites. Journal of Ap-plied Polymer Science, 77 (2000) pp.2404-2410.
[30] B. Krick, J. Ewin, G. Blackman, C. Junk, and W. Gregory Sawyer, Environmental dependence of ultra-low wear behavior of polytetra-fluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribology International, 51(2012) pp.42-46.
[31] L. Sun, Z.Y ang and X. Li, Mechanical and tribological properties of polyoxymethylene modified with nanoparticles and solid lubri-cants. Polymer Engineering & Science, 48 (2008) pp.1824-1832.
[32] Q. Wang, Q. Xue and W. Shen, The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribology International, 30 (1997) pp.193-197.
[33] Q. Wang, X. Zhang and X. Pei, A Synergistic Effect of Graphite and Nano-CuO on the Tribological Behavior of Polyimide Compo-sites. Journal of Macromolecular Science, Part B, 50(2011) pp.213-224.
[34] S. Bahadur and C. Sunkara, Effect of transfer film structure, compo-sition and bonding on the tribological behavior of polyphenylene sul-fide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear, 258 (2005) pp.1411-1421.
[35] K. Friedrich and A. Schlarb, Tribology of polymeric nanocomposites. Oxford: Butterworth-Heinemann.(2013).
[36] M. Godet, The third-body approach: A mechanical view of wear. Wear, 100 (1984) pp.437-452.
[37] J. Denape, Third Body Concept and Wear Particle Behavior in Dry Friction Sliding Conditions. Key Engineering Materials, 640 (2015) pp.1-12.
[38] S. Descartes and Y. Berthier, Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear, 252 (2002) pp.546-556
[39] Y. Berthier, Experimental evidence for friction and wear model-ling. Wear, 139 (1990) pp.77-92.
[40] P. Lepesant, C. Boher, Y. Berthier, and F. Rézai-AriaA phenomeno-logical model of the third body particles circulation in a high temper-ature contact. Wear, 298-299 (2013) pp.66-79.
[41] I. Iordanoff, Y. Berthier, S. Descartes and H. Heshmat, A Review of Recent Approaches for Modeling Solid Third Bodies. Journal of Tri-bology, 124 (2002) pp.725.
[42] S. Descartes, C. Desrayaud, E. Niccolini and Y. Berthier, Presence and role of the third body in a wheel–rail contact. Wear, 258 (2005) pp.1081-1090.
[43] Y. Berthier, S. Descartes, M. Busquet, E. Niccolini, C. Desrayaud, L. Baillet, The role and effects of the third body in the wheel–rail interac-tion. Fatigue & Fracture of Engineering Materials & Structures, 27(2004) pp.423-436.
[44] D. Majcherczak, P. Dufrenoy and Y. Berthier, Tribological, thermal and mechanical coupling aspects of the dry sliding contact. Tribology In-ternational, 40 (2007) pp.834-843.
[45] P.Ettl, B.Schmidt, M.Schenk, I. Laszlo, G. Haeusler, in: Proc.SPIE, (1998) pp.133-140.
[46] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, H. Soliman, Roughness parameters, Journal of Materials Processing Technology, 123(2002) pp.133-145
[47] B.Bhushan, Handbook of micro/nano tribology, CRC press,(1998).
[48] R.L. Fusaro, Self-lubricating polymer composites and polymer transfer film lubrication for space applications, Tribology International, 23(1990) pp.105-122
[49] E. Yang, J. Hirvonen, and R. Toivanen, Effect of temperature on the transfer film formation in sliding contact of PTFE with stainless steel. Wear, 146 (1991) pp.367-376.
[50] C. Schwartz, and S. Bahadur, Studies on the tribological behavior and transfer film–counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear, 237 (2000) pp.261-273.
[51] Z. Wu, D. Wang, Y. Wang, and A. Sun, Preparation and Tribological Properties of MoS2 Nanosheets. Advanced Engineering Materials, 12 (2010) pp.534-538.
[52] S. Shabana, S. Sonawane, V. Ranganathan, P. Pujjalwar, D. Pinjari, B. Bhanvase, P. Gogate and M. Ashokkumar, Improved synthesis of al-uminium nanoparticles using ultrasound assisted approach and sub-sequent dispersion studies in di-octyl adipate. Ultrasonics Sonochem-istry, 36(2017) pp.59-69.
[53] J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. Rahuman, Synthesis and antimicrobial activity of copper nanoparti-cles. Materials Letters, 71(2012) pp.114-116.
[54] H. Wang, J.Xu, J. Zhu and H. Chen, Preparation of CuO nanoparticles by microwave irradiation. Journal of Crystal Growth, 244(1) (2002) pp.88-94.
[55] H. oh, G. Kyu Choi, J. An, C. Moo Cho, D. Hoe Kim, I. Jae Park, T. Hoon Noh, D. Kim and K. Sun Hong, Size-controlled synthesis of monodispersed mesoporous α-Alumina spheres by a template-free forced hydrolysis method. Dalton Transactions, 40 (2011) p.6901.
[56] K. Holmberg and A. Mathews, Coatings tribology: a concept, critical aspects and future directions. Thin Solid Films, 253 (1994) pp.173-178.
[57] M. Sedlaček, B. Podgornik and J.Vižintin, Influence of surface prepa-ration on roughness parameters, friction and wear. Wear, 266(2009) pp.482-487.
[58] S. Sahoo, C.K. Chakraborti, S.C. Mishra, S. Naik, Analytical charac-terization of a gelling biodegradable polymer, (2011).
[59] G. Velazquez, A. Herrera-Gómez and M. Martı́n-Polo, Identification of bound water through infrared spectroscopy in methylcellulose. Journal of Food Engineering, 59 (2003) pp.79-84.
[60] C. Liang, and R. Marchessault, Infrared spectra of crystalline poly-saccharides. II. Native celluloses in the region from 640 to 1700 cm.1. Journal of Polymer Science, 39(1959) pp.269-278.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-02-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-02-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw