進階搜尋


下載電子全文  
系統識別號 U0026-0902201515233600
論文名稱(中文) 阿拉伯芥PANS1藉由調節miR156以調控植物發育生長相之轉變
論文名稱(英文) Arabidopsis PANS1 regulates vegetative phase transitions by modulating the expression of miR156
校院名稱 成功大學
系所名稱(中) 生命科學系
系所名稱(英) Department of Life Sciences
學年度 103
學期 1
出版年 104
研究生(中文) 洪筱梅
研究生(英文) Hsiao-Mei Hung 洪筱梅
學號 L56014065
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 指導教授-黃浩仁
口試委員-蔣鎮宇
口試委員-傅士峰
口試委員-張文粲
中文關鍵字 生物相轉變  葉片發育  分子生物標記  點突變 
英文關鍵字 PANS1  phase change  heteroblasty  leaf development  miR156  SPL genes 
學科別分類
中文摘要 器官大小的調控對於多細胞生物而言一直是科學家爭相研究的議題,尤其是在植物的葉片發育上,葉片是植物發育生長的核心,藉由行光合作用提供能量來維持全株植物的生長,對於人類發展與經濟活動更帶來重要的影響性。本篇研究主要探討在模式物種阿拉伯芥中的特異性突變株patronus1 (簡稱pans1),我們發現該株突變株的葉片比正常植株來的小,研究結果發現,是由於組成葉片之細胞的數目減少並且體積也較小,此外,我們還發現該突變株之成年葉片(adult leaf)發育不全,擁有幼葉(juvenile leaf)的形態特徵,其中包括重要指標葉背毛狀體的生成較遲緩。這些現象種種說明PANS1發生突變後,會影響植物生長相之轉變,又稱為Heteroblasty。Heteroblasty是指當植物進行生長相改變時,其性狀特徵伴隨之改變的現象,例如: 葉柄長短、葉片形狀、細胞大小、細胞數目、葉背毛狀體之發育等等。為證明此發現結果,我們透過影響生物相之轉變的分子生物標記miR156,分別測量在正常植株與突變株中不同年齡葉片之表現量差異。結果發現,在正常情形下,植物相位從幼年變成年時,miR156表現量會下降,使其下游SPL家族基因大量表現,促進成年葉片之發育,然而在pans1突變株中發現,miR156的表現量不減反增,miR156在成年葉片的表現量竟然比幼年葉片的還高。此外,我們更進一步觀測miR156下游SPL家族基因,發現家族中的SPL3, 5, 9 和10表現量受到高濃度之miR156之抑制,故而影響成年葉片之生長。為了近一步了解PANS1蛋白質是如何調控miR156,我們在該基因之胺基酸序列上設計四組不同保守區域的點突變,以此觀察哪一保守區對於調控miR156有其重要性。本研究最後提出的假說是PANS1基因透過抑制miR156表現,啟動參與植物相轉變之相關SPL家族基因,進而調控植物生長相之轉變,並且同時促進阿拉伯芥成年葉片之成長。

關鍵字:生物相轉變,葉片發育,分子生物標記,點突變
英文摘要 Organ size control of multicellular organisms poses a longstanding biological question that has always fascinated scientist. Especially leaf growth, by providing the food and renewable energy sources, is at the core of plant growth and undoubtedly an important part of human economic activities. Here, I report a novel Arabidopsis mutant, patronus1 (pans1), which reduced cell size and decreased cell number in leaves. The development of abaxial trichomes was also delayed in pans1. These facts indicate that pans1 mutant may accelerate heteroblasty, a phenomenon in which several traits of leaves change along with phase change, by alternating the cell number and size of cells, and trichome development. The genetic marker of leaf phase change, miR156, normally is down regulated in adult leaves but showed up-regulated in pans1. I also discovered PANS1 inhibits miR156 through its specific domains. Furthermore, miR156 downstream genes, SPL3, 5, 9 and10 had the decrease expression level in pans1 as a result of abnormal excessive miR156. Thus, I suggest that PANS1 plays an essential role of regulating vegetative phase change and promoting adult leaves growth in SPL-dependent pathway by inhibiting miR156 expression.



Keywords: PANS1, phase change, heteroblasty, leaf development, miR156, SPL genes
論文目次 Table of contents
Chinese Abstract I
English Abstract II
Acknowledgements III
List of Tables V
List of figures VI
Abbreviation VIII
Introduction 1
Material and Methods
Plant Materials and Growth Conditions 4
Virus-induced gene silencing 4
PANS1 coding sequence cloning 5
Phytohormone-stimulated callus formation 5
GUS Staining 5
Confocal Microscopy 6
Growth Analysis 6
Total RNA extraction 7
Results
Regulation of vegetative phase change by PANS1 8
Modulation of phase transitions by PANS1 via the miR156 9
Identification of functional important conserved residues of PANS1 10
Heteroblasty-associated change by PANS1 is evolutionarily conserved ……..10
Subcellular localization of PANS1 in Arabidosis leaf protoplasts 11
Discussion 12
References 16
List of Tables
Table 1. The abaxial trichome production 38
Table 2. Inhibition ratio (%) of phenotype of mutants 39
Table 3. List of primers 40
List of Figures
Figure 1. pans1 356-8 mutants delay the expression of adult leaf trait. 28
Figure 2. Leaf area (A), cell size (B) and cell number (C) of 30-days-old
wild type and pans1 356-8 plants plotted against leaf position. 29
Figure 3. PANS1 regulateS the cell size and number in a developmental
stage-dependent manner. 31
Figure 4. Quantification of the expression levels of miR156 and the
SPL genes. 32
Figure 5. Mutants of pans1 356-8 are designed by replacing amino acids
to Alanine. 33
Figure 6. Root length of versions of mutants of PANS1. 34
Figure 7. The morphology of fully expend leaves and shape of size of
adult leaf 8. 35
Figure 8. Identification essential domains of PANS1 protein as miR156
target. 36
Figure 9. Subcellular localization of PANS1 in Arabidosis leaf protoplasts 37
Supplementary Fig. S1.
Silencing effects of PANS1 in Arabidopsis. 42
Supplementary Fig. S2.
Cell number and cell size were reduced in PANS1-silencing leaves. 43
Supplementary Fig. S3.
Mutiple-sequence alignment of PANS1 protein from different species. 45
Supplementary Fig. S4.
Subcellular localization of NbPANS1 in tobacco transient plants. 46

Supplementary Fig. S5.
Localization of GUS activity in developing leaves and cotyledons
of Arabidopsis 47
Supplementary Fig. S6.
The expression pattern of PANS1. 48
Supplementary Fig. S7.
Strange development of reproductive organ in pans1 356-8. 49
Supplementary Fig. S8.
Localization of GUS activity in root tip, hypocotyl, SAM and reproductive organs of Arabidopsis. 50
Supplementary Fig. S9.
Callus formation of Col-0 and pans1 356-8 hypocotyl under CIM (4 and 7 days). 51
Supplementary Fig. S10.
Callus formation ability of Col-0 and pans1 356-8 hypocotyl under short term CIM (4 and 7 days) and long term (CIM 20 days). 52
Supplementary Fig. S11.
Silencing effects of PANS1 in N.benthamiana. 53

參考文獻 Achard, P., Gusti, A., Cheminant, S., Alioua, M., Dhondt, S., Coppens, F., Beemster, G. T. & Genschik, P.. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current biology : CB 19, 1188-1193 (2009).
Alonso-Peral, M.M., Candela, H., del Pozo, J. C., Martinez-Laborda, A., Ponce, M. R. & Micol, J. L.. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. Development 133, 3755-3766 (2006).
Andriankaja, M., Dhondt, S., De Bodt, S., Vanhaeren, H., Coppens, F., De Milde, L., Muhlenbock, P., Skirycz, A., Gonzalez, N., Beemster, G. T.& Inze, D.. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Developmental cell 22, 64-78 (2012).
Aukerman, M.J. & Sakai, H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant cell 15, 2730-2741 (2003).
Autran D., Jonak C., Belcram K., Beemster GT., Kronenberger J., Grandjean O., Inzé D. & Traas J.. Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J. 21, 6036-6049 (2002).
Beemster, G.T., De Veylder, L., Vercruysse, S., West, G., Rombaut, D., Van Hummelen, P., Galichet, A., Gruissem, W., Inze, D. & Vuylsteke, M.. Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant physiology 138, 734-743 (2005).
Beemster, G.T.S., Fiorani, F. & Inzé, D. Cell cycle: the key to plant growth control? Trends in Plant Science 8, 154-158 (2003).
Boudolf, V., Lammens, T., Boruc, J., Van Leene, J., Van Den Daele, H., Maes, S., Van Isterdael, G., Russinova, E., Kondorosi, E., Witters, E., De Jaeger, G., Inze, D. & De Veylder, L. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant physiology 150, 1482-1493 (2009).
Braybrook, S.A. & Kuhlemeier, C. How a plant builds leaves. The Plant cell 22, 1006-1018 (2010).
Chen, C.C., Fu, S. F., Lee, Y. I., Lin, C. Y., Lin, W. C. & Huang, H. J. Transcriptome analysis of age-related gain of callus-forming capacity in Arabidopsis hypocotyls. Plant & cell physiology 53, 1457-1469 (2012).
Chuck, G., Meeley, R., Irish, E., Sakai, H. & Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature genetics 39, 1517-1521 (2007).
Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., De Jaeger, G., Koncz, C., De Veylder, L. & Mercier, R. Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Current biology : CB 23, 2090-2099 (2013).
Candela H, Martínez-Laborda A & Micol JL. Venation Pattern Formation in Arabidopsis thaliana Vegetative Leaves. Dev Biol. 205, 205-216 (1999).
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022-2025 (2004).
Demura, T. & Ye, Z.H. Regulation of plant biomass production. Current opinion in plant biology 13, 299-304 (2010).
Dewitte, W., Scofield, S., Alcasabas, A. A., Maughan, S. C., Menges, M., Braun, N., Collins, C., Nieuwland, J., Prinsen, E., Sundaresan, V. & Murray, J. A. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences of the United States of America 104, 14537-14542 (2007).
Dhondt, S., Coppens, F., De Winter, F., Swarup, K., Merks, R. M., Inze, D., Bennett, M. J. & Beemster, G. T.. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant physiology 154, 1183-1195 (2010).
Dhondt, S., Van Haerenborgh, D., Van Cauwenbergh, C., Merks, R. M., Philips, W., Beemster, G. T. & Inze, D. Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis. The Plant journal : for cell and molecular biology 69, 553-563 (2012).
Donnelly PM., Bonetta D., Tsukaya H., Dengler RE. & Dengler NG. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol. 15, 407-419 (1999).
Doerks, T., Copley, R.R., Schultz, J., Ponting, C.P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome research 12, 47-56 (2002).
De Veylder L., Beeckman T., Beemster GT., Krols L., Terras F., Landrieu I.,van der Schueren E., Maes S., Naudts M. & Inzé D. Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell. 13, 1653-1668 (2001).
Efroni, I., Blum, E., Goldshmidt, A. & Eshed, Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. The Plant cell 20, 2293-2306 (2008).
Exner, V. & Hennig, L. Chromatin rearrangements in development. Current opinion in plant biology 11, 64-69 (2008).
Ferjani., A., Yano., S., Horiguchi., G. & Tsukaya, H. Control of Leaf Morphogenesis by Long- and Short-Distance Signaling: Differentiation of Leaves Into Sun or Shade Types and Compensated Cell Enlargement. Plant Cell Monographs 10, 47-62 (2008).
Fornara, F. & Coupland, G. Plant phase transitions make a SPLash. Cell 138, 625-627 (2009).
Galbraith DW, Harkins KR. & Knapp S. Systemic Endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991 Jul;96(3):985-9. 96, 985-989 (1991).
Granier C. & Tardieu F. Spatial and temporal analyses of expansion and cell cycle in sunflower leaves. A common pattern of development for all zones of a leaf and different leaves of a plant. Plant Physiol. 116, 991-1001 (1998).
Gandikota, M., Birkenbihl, R. P., Hohmann, S., Cardon, G. H., Saedler, H. & Huijser, P. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant journal : for cell and molecular biology 49, 683-693 (2007).
Granier, C. & Tardieu, F. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant, cell & environment 32, 1175-1184 (2009).
Granier, C., Turc, O. & Tardieu, F. Co-Ordination of Cell Division and Tissue Expansion in Sunflower, Tobacco, and Pea Leaves: Dependence or Independence of Both Processes? Journal of plant growth regulation 19, 45-54 (2000).
Hay, A., Jackson, D., Ori, N. & Hake, S. Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system. Plant physiology 131, 1671-1680 (2003).
Hepworth, J. & Lenhard, M. Regulation of plant lateral-organ growth by modulating cell number and size. Current opinion in plant biology 17, 36-42 (2014).
Horiguchi, G., Molla-Morales, A., Perez-Perez, J. M., Kojima, K., Robles, P., Ponce, M. R., Micol, J. L. & Tsukaya, H. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. The Plant journal : for cell and molecular biology 65, 724-736 (2011).
Huijser, P. & Schmid, M. The control of developmental phase transitions in plants. Development 138, 4117-4129 (2011).
Hunter, C., Sun, H. & Poethig, R.S. The Arabidopsis Heterochronic Gene ZIPPY Is an ARGONAUTE Family Member. Current Biology 13, 1734-1739 (2003).
Hamada S., Onouchi H., Tanaka H., Kudo M., Liu YG., Shibata D., MacHida C. & Machida Y. Mutations in the WUSCHEL gene of Arabidopsis thaliana result in the development of shoots without juvenile leaves. Plant J. 24, 91-101 (2000).
Hemerly AS., Ferreira P., de Almeida Engler J., Van Montagu M., Engler G. & Inzé D.et al. cdc2a Expression in Arabidopsis 1s Linked with Competence for Cell Division. Plant Cell. 5, 1711-1723 (1993).
Ikeuchi, M., Sugimoto, K. & Iwase, A. Plant callus: mechanisms of induction and repression. The Plant cell 25, 3159-3173 (2013).
Inze, D. & De Veylder, L. Cell cycle regulation in plant development. Annual review of genetics 40, 77-105 (2006).
Jin, D., Wang, Y., Zhao, Y. & Chen, M. MicroRNAs and their cross-talks in plant development. Journal of genetics and genomics = Yi chuan xue bao 40, 161-170 (2013).
Johnson, K. & Lenhard, M. Genetic control of plant organ growth. The New phytologist 191, 319-333 (2011).
Jung, J.H., Seo, P.J., Kang, S.K. & Park, C.M. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant molecular biology 76, 35-45 (2011).
Jung, J.H., Seo, Y. H., Seo, P. J., Reyes, J. L., Yun, J., Chua, N. H. & Park, C. M. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant cell 19, 2736-2748 (2007).
Jefferson RA., Kavanagh TA. & Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907 (1987).
Juraniec M., Lequeux H., Hermans C., Willems G., Nordborg M., Schneeberger K., Salis P., Vromant M., Lutts S. & Verbruggen N. Towards the discovery of novel genetic component involved in stress resistance in Arabidopsis thaliana. New Phytol. 3, 810-824 (2014).
Kondorosi E, Roudier F. & Gendreau E. Plant cell-size control: growing by ploidy? Current opinion in plant biology 3, 488-492 (2000).
Kawade, K., Horiguchi, G. & Tsukaya, H. Non-cell-autonomously coordinated organ size regulation in leaf development. Development 137, 4221-4227 (2010).
Kazama, T., Ichihashi, Y., Murata, S. & Tsukaya, H. The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant & cell physiology 51, 1046-1054 (2010).
Kim, M. Lim, J. H., Ahn, C. S., Park, K., Kim, G. T., Kim, W. T. & Pai, H. S. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. The Plant cell 18, 2341-2355 (2006).
Kerstetter RA. & Poethig RS. The specification of leaf identity during shoot development. Annu Rev Cell Dev Biol. 14, 373-398 (1998).
Lenhard, M. All's well that ends well: arresting cell proliferation in leaves. Developmental cell 22, 9-11 (2012).
Lijsebettens., M.V. & Clarke, J. Leaf Development in Arabidopsis Plant Physiol. 36, 47-60 (1998).
Liu., Y., Schiff, M. & Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato. Plant Journal 31, 777-786 (2002).
Lopez-Juez, E., Dillon, E., Magyar, Z., Khan, S., Hazeldine, S., de Jager, S. M., Murray, J. A., Beemster, G. T., Bogre, L. & Shanahan, H. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. The Plant cell 20, 947-968 (2008).
Lumba, S., Tsuchiya, Y., Delmas, F., Hezky, J., Provart, N. J., Shi Lu, Q., McCourt, P. & Gazzarrini, S. The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMC biology 10, 8 (2012).
Liu Y., Schiff M., Marathe R. & Dinesh-Kumar SP. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415-429 (2002).
Melaragno JE, Mehrotra B. & Coleman AW. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis. Plant Cell. 5, 1661-1668 (1993).
Micol, J.L. Leaf development: time to turn over a new leaf? Current opinion in plant biology 12, 9-16 (2009).
Michael DA, Paulo JM. & Sunanda JR.. Image processing with ImageJ. BIOPHOTONICS (2004).
Mizukami Y. & Fischer RL. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci U S A. 97, 942-947 (2000).
Noir, S., Bömer M., Takahashi N., Ishida T., Tsui TL., Balbi V., Shanahan H., Sugimoto K. & Devoto A. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant physiology 161, 1930-1951 (2013).
Ozawa S, Yasutani I, Fukuda H, Komamine A. & Sugiyama M. Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development. 125, 135-142 (1998).
Pesch, M. & Hulskamp, M. One, two, three...models for trichome patterning in Arabidopsis? Current opinion in plant biology 12, 587-592 (2009).
Peterson, K.M., Rychel, A.L. & Torii, K.U. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. The Plant cell 22, 296-306 (2010).
Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. & Fleming, A. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proceedings of the National Academy of Sciences of the United States of America 98, 11812-11817 (2001).
Poethig, R.S. The past, present, and future of vegetative phase change. Plant physiology 154, 541-544 (2010).
Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J. & Jansen, M.A. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12, 98-105 (2007).
Powell, A.E. & Lenhard, M. Control of organ size in plants. Current biology : CB 22, R360-367 (2012).
Poethig R & Sussex IM. The developmental morphology and growth dynamics of the tobacco leaf. Planta. 165, 158-169 (1985).
Poethig RS. Phase change and the regulation of shoot morphogenesis in plants. Science. 250, 923-930 (1990).
Poethig RS. & Sussex IM. The developmental morphology and growth dynamics of the tobacco leaf. Planta. 165, 158-169 (1985).
Poethig RS. & Sussex IM. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta. 165, 170-184 (1985).
Scarpella, E., Barkoulas, M. & Tsiantis, M. Control of leaf and vein development by auxin. Cold Spring Harbor perspectives in biology 2, a001511 (2010).
Schnittger, A. Misexpression of the Cyclin-Dependent Kinase Inhibitor ICK1/KRP1 in Single-Celled Arabidopsis Trichomes Reduces Endoreduplication and Cell Size and Induces Cell Death. The Plant Cell Online 15, 303-315 (2003).
Schwab, R., Palatnik JF., Riester M., Schommer C., Schmid M. & Weigel D. Specific effects of microRNAs on the plant transcriptome. Developmental cell 8, 517-527 (2005).
Semiarti., E., Ueno Y., Tsukaya H., Iwakawa H., Machida C., & Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771-1783 (2001).
Skirycz, A., Claeys H., De Bodt S., Oikawa A., Shinoda S., Andriankaja M., Maleux K., Eloy NB., Coppens F., Yoo SD., Saito K. & Inzé D. Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. The Plant cell 23, 1876-1888 (2011).
Street, N.R. Sjödin A., Bylesjö M., Gustafsson P., Trygg J. & Jansson S. A cross-species transcriptomics approach to identify genes involved in leaf development. BMC genomics 9, 589 (2008).
Tsuge T., Tsukaya H. & Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development. 122, 1589-1600 (1996).
Tsukaya H. & Uchimiya H. Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Mol Gen Genet 256, 231-238 ( 1997 ).
Tsukaya H, Shoda K, Kim GT. & Uchimiya H. Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta. 210, 536-542 (2000).
Takahashi, M., Furuhashi T., Ishikawa N., Horiguchi G., Sakamoto A., Tsukaya H. & Morikawa H. Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. The New phytologist 201, 1304-1315 (2014).
Tao, Q., Guo D., Wei B., Zhang F., Pang C., Jiang H., Zhang J., Wei T., Gu H., Qu LJ. & Qin G. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. The Plant cell 25, 421-437 (2013).
Tsukaya, H. MECHANISM OF LEAF-SHAPE DETERMINATION. Plant Biology 57, 477-496 (2006).
Tsukaya, H. Leaf Development. The Arabidopsis Book (2013).
Usami, T., Horiguchi, G., Yano, S. & Tsukaya, H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136, 955-964 (2009).
Vazquez, F., Vaucheret H., Rajagopalan R., Lepers C., Gasciolli V., Mallory AC., Hilbert JL., Bartel DP & Crété P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular cell 16, 69-79 (2004).
Wang, J.W., Schwab, R., Czech, B., Mica, E. & Weigel, D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant cell 20, 1231-1243 (2008).
Wu, G., Park MY., Conway SR., Wang JW., Weigel D. & Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759 (2009).
Wu, G. & Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547 (2006).
Xie, K., Shen J., Hou X., Yao J., Li X., Xiao J. & Xiong L. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant physiology 158, 1382-1394 (2012).
Yang L, Xu M, Koo Y, He J. & Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife. 2 (2013).
Zamariola, L., De Storme N., Vannerum K., Vandepoele K., Armstrong SJ., Franklin FC. & Geelen D. SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana. The Plant journal : for cell and molecular biology 77, 782-794 (2014).
Zhiponova, M.K., Vanhoutte I., Boudolf V., Betti C., Dhondt S., Coppens F., Mylle E., Maes S., González-García MP., Caño-Delgado AI., Inzé D., Beemster GT., De Veylder L. & Russinova E. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. The New phytologist 197, 490-502 (2013).
Zotz, G., Wilhelm, K. & Becker, A. Heteroblasty—A Review. The Botanical Review 77, 109-151 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw