進階搜尋


下載電子全文  
系統識別號 U0026-0902201108483900
論文名稱(中文) 可供生物分子檢測的二氧化鈦奈米場效電晶體感測器之研發
論文名稱(英文) Development of TiO2 NWs-Based FET Nanobiosensors for Biomolecule Detection
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 1
出版年 100
研究生(中文) 朱永明
研究生(英文) Yung-Ming Chu
學號 p8894105
學位類別 博士
語文別 英文
論文頁數 143頁
口試委員 口試委員-葉才明
口試委員-吳靖宙
口試委員-林其昌
口試委員-周榮泉
口試委員-楊裕雄
口試委員-陳家進
指導教授-張憲彰
口試委員-鄭國順
中文關鍵字 二氧化鈦奈米線  水熱法合成  場效應電晶體  polypyrrole propylic acid (PPa)  生物分子固定  電聚合  碳摻雜  免疫感測器 
英文關鍵字 TiO2 nanowire  hydrothermal synthesis  field-effect transistor (FET)  polypyrrole propylic acid (PPa)  immobilization  electrochemical polymerization (ECP)  carbon doping  immunosensor 
學科別分類
中文摘要 近十年來,一維奈米材料場效應生物感測器逐漸成功地被實現,成為對特定待測物具有高專一、高選擇以及高靈敏度的感測元件。二氧化鈦 (TiO2)材料具有穩定之物理與化學特性,也具有容易製備之優點,然而文獻上探討以TiO2奈米材料作為奈米場效應感測器應用元件之研究仍相當有限,因此本論文以開發一維TiO2奈米材料的場效應電晶體元件為目標,並藉由具較低導電度的高分子polypyrrole propylic acid (PPa) 將抗體固定在奈米線(NW)的表面,且探討了其相對應的抗原之專一性檢測。本研究中所開發的TiO2奈米線感測器,依功能可分為三型,且每一型的開發皆經四個階段:含奈米線的合成、元件的開發組裝、生物分子的固定,以及材料與感測器特性的分析。其中TiO2 NWs是藉由TiO2奈米粉末在強鹼中經水熱法反應合成,所得長度與直徑分別為10 ~ 20 m與40 ~ 50 nm,並沈積固定於有SiO2之Si基板的金屬電極區域之間,再透過PPa或APTMS將anti-rabbit IgG (1oAb)固定在TiO2表面。量測時,加入不同濃度rabbit IgG (2oAb),待其反應後清洗與乾燥後進行檢測。透過紀錄元件直流電流響應變化,藉此了解NW、1oAb與2oAb結合之間的關係。研究之中場效應架構的感測元件,對2oAb之濃度有pg/mL等級的檢測靈敏度,亦具有良好的專一性與選擇性。此外,相同架構的元件,以葡萄糖為碳源在TiO2 NWs表面摻雜少量的碳,可使元件具有吸收可見光之能力,並發現藉由光電效應提高元件的檢測極限,亦可以降低元件內部雜訊產生的響應。未來若配搭予適當光敏性生物分子的感測組合,當可再開啟有趣的研究新頁。
英文摘要 Over the last decade, one-dimensional nanomaterial field effect transistor (FET) biosensors have been successfully developed from concepts into highly selective, specific and sensitive devices that are capable of detecting numerous specific targets. However, research empirically documenting the relationships between TiO2 nanomaterials and its applications on FET nanobiosensors is scanty, although it is a good stability material and easy to manufacture. Therefore, the aim of this thesis is to attempt to develop TiO2 nanowires (NWs) FET devices through the immobilization of biomolecules on NW surfaces using polypyrrole propylic acid (PPa) and apply for target biomolecules detection. The TiO2 biosensors we developed can be divided into three models according to their functionalities, and each model is composed of four stages, including NWs synthesis, device development, biomolecule immobilization and characteristic analysis. TiO2 NWs was prepared through a hydrothermal method of NaOH with P25 and connected to Au/Ti microelectrodes on Si/SiO2 substrate. Anti-rabbit IgG (1oAb) was than immobilized onto the NWs surface by PPa or APTMS for specifically recognition of rabbit IgG (2oAb). Correlation between the reacted 2oAb concentration and measured D.C. current were recorded for calculating the linear region and sensitivity of device. The NWs-based non-FET and FET biosensors represent the detecting ability for 2oAb at micro- and pico-gram level, respectively. TiO2 NWs doped with 1 mg/mL glucose showed higher detection sensitivity and signal-to-noise under visible light illumination.
論文目次 摘 要 I
Abstract II
Contents III
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 General Background Information 1
1.2 Literature Review 4
1.2.1 Technology of immunosensors 4
1.2.2 Characteristics of Field Effect Transistors 5
1.2.3 1-D nanomaterials FET biosensors 5
1.2.4 1-D nanomaterials 9
1.2.5 Assembly of 1-D nanomaterials on devices 12
1.2.6 Immobilization of biomolecules on 1-D nanomaterial devices 16
1.3 Research Purposes 23
1.4 Objectives for This Thesis 24
Chapter 2 Methods 27
2.1 Research Design 27
2.2 Materials and Equipment 30
2.2.1 Reagents 30
2.2.2 Manufacturing equipment 31
2.3 Synthesis of NWs 32
2.3.1 TiO2 NWs preparation 32
2.3.2 Carbon-doped TiO2 NWs preparation 33
2.4 Fabrication of Devices 37
2.4.1 Experimental steps 37
2.4.2 TiO2 NWs assembly on devices 40
2.4.3 Carbon-doped TiO2 NWs assembly on devices 41
2.5 Immobilization of Biomolecules 42
2.5.1 Immobilization of biomolecule using PPa 42
2.5.2 Immobilization of biomolecule using APTMS 44
2.6 Analyte Properties 46
2.7 Instruments and characterization 47
2.7.1 Scanning electron microscope (SEM) examination 47
2.7.2 X-ray spectroscope (EDS) examination 47
2.7.3 Transmission electron microscope (TEM) examination 47
2.7.4 X-ray diffractometer (XRD) examination 48
2.7.5 Raman scattering spectroscope analysis 48
2.7.6 UV-vis reflectance spectra analysis 48
2.7.7 Electrical analysis 48
2.7.8 Zeta potential analysis 49
Chapter 3 TiO2 Nanowires Biosensors 50
3.1 Overview 50
3.2 Experimental Setup 51
3.2.1 Synthesis of NWs 51
3.2.2 Fabrication of TiO2 NWs devices 51
3.2.3 Immobilization of biomolecules on the devices 52
3.2.4 Sample preparation and immune reaction 53
3.3 Results and Discussion 55
3.3.1 Characteristics of TiO2 NWs 55
3.3.2 Specificity of the TiO2 NWs immunosensor 57
3.3.3 Different concentrations of the target 60
3.4 Summary 64
Chapter 4 TiO2 Nanowires FET Immunosensor 65
4.1 Overview 65
4.2 Research Value 66
4.3 Experimental Setup 67
4.3.1 TiO2-NW-based FET devices 67
4.3.2 Encapsulization of biomolecules on the devices 68
4.3.3 Analyte properties 69
4.4 Results and Discussion 70
4.4.1 Characteristics of TiO2 NWs and TiO2-NW-based FET devices 70
4.4.2 ECP encapsulation of biomolecules 72
4.4.3 Specificity of TiO2-NWs FET immunosensor 75
4.4.4 Selectivity of TiO2-NWs FET immunosensor 77
4.4.5 Sensitivity of TiO2-NWs FET immunosensor 78
4.4.6 Mechanism of TiO2 NW immunosensors 80
4.4.7 Comparison of PPa and APTMS immobilization methods 80
4.5 Summary 83
Chapter 5 Carbon-doped TiO2 Nanowires FET Nanobiophotosensors 84
5.1 Overview 84
5.2 Value of Research 85
5.3 Experimental Setup 86
5.3.1 NWs sample preparation 86
5.3.2 Fabrication of NW-FET devices 87
5.3.3 Immobilization of IgG for NWs-FET devices 87
5.3.4 Analyte properties 89
5.4 Results and Discussion 91
5.4.1 NW morphology and structure 91
5.4.2 Devices photoelectrical analysis 94
5.4.3 Specificity of carbon-doped TiO2-NWs biosensors 96
5.4.4 Selectivity of carbon-doped TiO2-NW biosensors 98
5.4.5 Sensitivity of carbon-doped TiO2-NWs biosensors 99
5.5 Summary 105
Chapter 6 Conclusions and Future Perspectives 106
6.1 Overview of the Dissertation 106
6.2 Recommendations for Future Research 109
References 110
Appendix A: Selection of Nanaowires 117
A.1 Selection of the Wash Methods 117
A.2 Effect of NaOH Concentration and Hydrothermal Reaction Time 119
Appendix B: Estimation of the Assembly Methods 121
B.1 AC electric field 121
B.2 Langmuir-Blodgett trough 122
B.3 Different surface tensions 124
B.4 Gravity Channel 127
Appendix C: DC Electrical Characteristics 132
Vita 133
Publication List 134
口試委員問題與建議 136
參考文獻 [1] Cui, Y., Wei, Q. Q., Park, H. K. and Lieber, C. M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293 (5533), 1289-1292, 2001.
[2] He, B., Morrow, T. J. and Keating, C. D.: Nanowire sensors for multiplexed detection of biomolecules, Curr. Opin. Chem. Biol., 12 (5), 522-528, 2008.
[3] Patolsky, F., Zheng, G. F. and Lieber, C. M.: Nanowire-based biosensors, Anal. Chem., 78 (13), 4260-4269, 2006.
[4] Allen, B. L., Kichambare, P. D. and Star, A.: Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater., 19 (11), 1439-1451, 2007.
[5] Li, C., Curreli, M., Lin, H., Lei, B., Ishikawa, F. N., Datar, R., Cote, R. J., Thompson, M. E. and Zhou, C. W.: Complementary detection of prostate-specific antigen using ln2O3 nanowires and carbon nanotubes, J. Am. Chem. Soc., 127 (36), 12484-12485, 2005.
[6] Chu, Y.-M., Lin, C.-C., Chang, H.-C., Li, C.-M. and Guo, C.-X.: TiO2 Nanowire FET Device: Encapsulation of biomolecules by electro polymerized pyrrole propylic acid, Biosens. Bioelectron., 26 (5), 2334-2340, 2011.
[7] Li, R., Gan, Y., Song, Q. L., Zhu, Z. H., Shi, J. S., Yang, H. B., Wang, W., Chen, P. and Li, C. M.: Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane, Nanoscale, 2 (8), 1474-1479, 2010.
[8] Star, A., Tu, E., Niemann, J., Gabriel, J. C. P., Joiner, C. S. and Valcke, C.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors, Proc. Natl. Acad. Sci. U. S. A., 103 (4), 921-926, 2006.
[9] Gao, Z. Q., Agarwal, A., Trigg, A. D., Singh, N., Fang, C., Tung, C. H., Fan, Y., Buddharaju, K. D. and Kong, J. M.: Silicon nanowire arrays for label-free detection of DNA, Anal. Chem., 79 (9), 3291-3297, 2007.
[10] Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N., Turner-Evans, D. B., Hamilton, A. D., LaVan, D. A., Fahmy, T. M. and Reed, M. A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, 445 (7127), 519-522, 2007.
[11] Wang, R. H., Ruan, C. M., Kanayeva, D., Lassiter, K. and Li, Y. B.: TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes, Nano Lett., 8 (9), 2625-2631, 2008.
[12] Bao, S. J., Li, C. M., Zang, J. F., Cui, X. Q., Qiao, Y. and Guo, J.: New nanostructured TiO2 for direct electrochemistry and glucose sensor applications, Adv. Funct. Mater., 18 (4), 591-599, 2008.
[13] Sysoev, V. V., Button, B. K., Wepsiec, K., Dmitriev, S. and Kolmakov, A.: Toward the nanoscopic "electronic nose": Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors, Nano Lett., 6 (8), 1584-1588, 2006.
[14] Linsebigler, A. L., Lu, G. Q. and Yates, J. T.: Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results, Chem. Rev., 95 (3), 735-758, 1995.
[15] Serway, R. A. and Jewett, J. W., Physics for scientists and engineers. 7th ed.; Thomson: Australia, 2008.
[16] Park, J. H., Kim, S. and Bard, A. J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett., 6 (1), 24-28, 2006.
[17] Storri, S., Santoni, T., Minunni, M. and Mascini, M.: Surface modifications for the development of piezoimmunosensors, Biosens. Bioelectron., 13 (3-4), 347-357, 1998.
[18] Dong, H., Li, C. M., Chen, W., Zhou, Q., Zeng, Z. X. and Luong, J. H. T.: Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization, Anal. Chem., 78 (21), 7424-7431, 2006.
[19] Wilson, M. S. and Nie, W. Y.: Electrochemical multianalyte immunoassays using an array-based sensor, Anal. Chem., 78 (8), 2507-2513, 2006.
[20] Chen, W., Lei, Y. and Li, C. M.: Regenerable leptin immunosensor based on protein G immobilized Au-Pyrrole Propylic Acid-Polypyrrole nanocomposite, Electroanalysis, 22 (10), 1078-1083, 2010.
[21] Hu, W. H., Lu, Z. S., Liu, Y. S. and Li, C. M.: In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection, Langmuir, 26 (11), 8386-8391, 2010.
[22] Curreli, M., Zhang, R., Ishikawa, F. N., Chang, H. K., Cote, R. J., Zhou, C. and Thompson, M. E.: Real-time, label-free detection of biological entities using nanowire-based FETs, IEEE Trans. Nanotechnol., 7 (6), 651-667, 2008.
[23] Wang, J.: Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 17 (1), 7-14, 2005.
[24] Ishikawa, F. N., Chang, H. K., Curreli, M., Liao, H. I., Olson, C. A., Chen, P. C., Zhang, R., Roberts, R. W., Sun, R., Cote, R. J., Thompson, M. E. and Zhou, C. W.: Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes, ACS Nano, 3 (5), 1219-1224, 2009.
[25] Patolsky, F., Zheng, G. F., Hayden, O., Lakadamyali, M., Zhuang, X. W. and Lieber, C. M.: Electrical detection of single viruses, Proc. Natl. Acad. Sci. U. S. A., 101 (39), 14017-14022, 2004.
[26] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T.: Photogeneration of highly amphiphilic TiO2 surfaces, Advanced Materials, 10 (2), 135-+, 1998.
[27] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T.: Light-induced amphiphilic surfaces, Nature, 388 (6641), 431-432, 1997.
[28] Oregan, B. and Gratzel, M.: A Low-cost, High-efficiency Solar-cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 353 (6346), 737-740, 1991.
[29] Diebold, U.: The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53-229, 2003.
[30] Wu, J. J., Chen, G. R., Yang, H. H., Ku, C. H. and Lai, J. Y.: Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells, Appl. Phys. Lett., 90 (21), 3109, 2007.
[31] Li, C., Zhang, D. H., Liu, X. L., Han, S., Tang, T., Han, J. and Zhou, C. W.: In2O3 nanowires as chemical sensors, Appl. Phys. Lett., 82 (10), 1613-1615, 2003.
[32] Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. and Lieber, C. M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nat. Biotechnol., 23 (10), 1294-1301, 2005.
[33] Kim, A., Ah, C. S., Yu, H. Y., Yang, J. H., Baek, I. B., Ahn, C. G., Park, C. W., Jun, M. S. and Lee, S.: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors, Appl. Phys. Lett., 91 (10), 3901 2007.
[34] Qurashi, A., Irfan, M. F. and Alam, M. W.: In2O3 nanostructures and their chemical and biosensor applications, Arab. J. Sci. Eng., 35 (1C), 125-145, 2010.
[35] Jolivet, J.-P., Metal oxide chemistry and synthesis: From solution to oxide. John Wiley and Son: 2000.
[36] 王世敏, 許祖勛 and 傅晶, 奈米材料原理與備製. 五南圖書出版股份有限公司: 台北市, 2004.
[37] Lu, C.-C. Hydrothermal synthesis of TiO2 nanowires. National Cheng Kung University, Tainan, 2005.
[38] Yuan, Z. Y. and Su, B. L.: Titanium oxide nanotubes, nanofibers and nanowires, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 241 (1-3), 173-183, 2004.
[39] Kao, I.-L. Preparation and characterization of nanostructured titanate materials using hydrothermal methods. National Tsing Hua University, Hsinchu, 2007
[40] Chu, Y.-M., Lin, C.-C., Wu, J.-J. and Chang, H.-C., A rapid and simple method for parallel the TiO2 nanowires and the aligned-substrate surface: Characterization of nanowires. In The 3nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems Sanya Hainan Island, 2008; Vol. 1-3, pp 539-542.
[41] Irie, H., Watanabe, Y. and Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett., 32 (8), 772-773, 2003.
[42] Sakthivel, S., Janczarek, M. and Kisch, H.: Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B, 108 (50), 19384-19387, 2004.
[43] Tang, X. H. and Li, D. Y.: Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response, J. Phys. Chem. C, 112 (14), 5405-5409, 2008.
[44] Tsai, C. C. and Teng, H. S.: Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced water cleavage, Appl. Surf. Sci., 254 (15), 4912-4918, 2008.
[45] Fujitsu, S. and Hamada, T.: Electrical-properties of manganese-doped titanium-dioxide, J. Am. Ceram. Soc., 77 (12), 3281-3283, 1994.
[46] Litter, M. I. and Navio, J. A.: Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol., A, 98 (3), 171-181, 1996.
[47] Bhattacharyya, K., Varma, S., Tripathi, A. K., Bharadwaj, S. R. and Tyagi, A. K.: Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene, J. Phys. Chem. C, 112 (48), 19102-19112, 2008.
[48] Shaban, Y. A. and Khan, S. U. M.: Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water, Int. J. Hydrogen Energy, 33 (4), 1118-1126, 2008.
[49] Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., Nishijima, K., Miyamoto, Z. and Majima, T.: Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy, J. Phys. Chem. B, 108 (50), 19299-19306, 2004.
[50] Ren, W. J., Ai, Z. H., Jia, F. L., Zhang, L. Z., Fan, X. X. and Zou, Z. G.: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Applied Catalysis B-Environmental, 69 (3-4), 138-144, 2007.
[51] Yu, G. H., Cao, A. Y. and Lieber, C. M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nat. Nanotechnol., 2 (6), 372-377, 2007.
[52] Yang, P. D.: Wires on water, Nature, 425 (6955), 243-244, 2003.
[53] Hong, S., Kim, T. H., Lee, J., Byun, K. E., Koh, J., Kim, T. and Myung, S.: "Surface-programmed assembly" of nanotube/nanowire-based integrated devices, NANO, 2 (6), 333-350, 2007.
[54] Dong, L. F., Bush, J., Chirayos, V., Solanki, R. and Jiao, J.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects, Nano Lett., 5 (10), 2112-2115, 2005.
[55] Harnack, O., Pacholski, C., Weller, H., Yasuda, A. and Wessels, J. M.: Rectifying behavior of electrically aligned ZnO nanorods, Nano Lett., 3 (8), 1097-1101, 2003.
[56] Suh, D. I., Lee, S. Y., Hyung, J. H., Kim, T. R. and Lee, S. K.: Multiple ZnO nanowires field-effect transistors, J. Phys. Chem. C, 112 (4), 1276-1281, 2008.
[57] Englander, O., Christensen, D., Kim, J., Lin, L. W. and Morris, S. J. S.: Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, Nano Lett., 5 (4), 705-708, 2005.
[58] Wanekaya, A. K., Chen, W., Myung, N. V. and Mulchandani, A.: Nanowire-based electrochemical biosensors, Electroanalysis, 18 (6), 533-550, 2006.
[59] Jin, S., Whang, D. M., McAlpine, M. C., Friedman, R. S., Wu, Y. and Lieber, C. M.: Scalable interconnection and integration of nanowire devices without registration, Nano Lett., 4 (5), 915-919, 2004.
[60] Tao, A. R., Huang, J. X. and Yang, P. D.: Langmuir-blodgettry of nanocrystals and nanowires, Acc. Chem. Res., 41 (12), 1662-1673, 2008.
[61] Whang, D., Jin, S. and Lieber, C. M.: Large-scale hierarchical organization of nanowires for functional nanosystems, Jpn. J. Appl. Phys., Part 1, 43 (7B), 4465-4470, 2004.
[62] Whang, D., Jin, S., Wu, Y. and Lieber, C. M.: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems, Nano Lett., 3 (9), 1255-1259, 2003.
[63] Huang, Y., Duan, X. F., Wei, Q. Q. and Lieber, C. M.: Directed assembly of one-dimensional nanostructures into functional networks, Science, 291 (5504), 630-633, 2001.
[64] Li, S., Liu, N. Y., Chan-Park, M. B., Yan, Y. A. and Zhang, Q.: Aligned single-walled carbon nanotube patterns with nanoscale width, micron-scale length and controllable pitch, Nanotechnology, 18, 2007.
[65] Shim, B. S. and Kotov, N. A.: Single-walled carbon nanotube combing during layer-by-layer assembly: From random adsorption to aligned composites, Langmuir, 21, 9381-9385, 2005.
[66] Fan, Z. Y., Ho, J. C., Jacobson, Z. A., Yerushalmi, R., Alley, R. L., Razavi, H. and Javey, A.: Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing, Nano Lett., 8 (1), 20-25, 2008.
[67] Yang, L., Nuraje, N., Bai, H. and Matsui, H.: Crossbar assembly of antibody-functionalized peptide nanotubes via biomimetic molecular recognition, J. Pept. Sci., 14 (2), 203-209, 2008.
[68] Kim, Y. K., Kang, P. S., Kim, D. I., Shin, G., Kim, G. T. and Ha, J. S.: Fabrication of nanowire channels with unidirectional alignment and controlled length by a simple, gas-blowing-assisted, selective-transfer-printing technique, Small, 5 (6), 727-734, 2009.
[69] Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. and Lieber, C. M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 409 (6816), 66-69, 2001.
[70] Bunimovich, Y. L., Shin, Y. S., Yeo, W. S., Amori, M., Kwong, G. and Heath, J. R.: Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution, J. Am. Chem. Soc., 128 (50), 16323-16331, 2006.
[71] Li, Z., Chen, Y., Li, X., Kamins, T. I., Nauka, K. and Williams, R. S.: Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett., 4 (2), 245-247, 2004.
[72] Patolsky, F., Zheng, G. F. and Lieber, C. M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nat. Protoc., 1 (4), 1711-1724, 2006.
[73] APTES 3-aminopropyltriethoxysilane. http://www.chemicalbook.com/Search_EN.aspx?keyword=3-aminopropyltriethoxysilane.
[74] APDMES 3-aminopropyldimethylethoxysilane. http://www.chemicalbook.com/Search_EN.aspx?keyword=3-aminopropyldimethylethoxysilane.
[75] MPTMS 3-mercaptopropyltrimethoxysilane. http://www.chemicalbook.com/Search_EN.aspx?keyword=3-mercaptopropyltrimethoxysilane.
[76] Star, A., Gabriel, J. C. P., Bradley, K. and Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices, Nano Lett., 3 (4), 459-463, 2003.
[77] Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. and Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett., 3 (6), 727-730, 2003.
[78] Kojima, A., Hyon, C. K., Kamimura, T., Maeda, M. and Matsumoto, K.: Protein sensor using carbon nanotube field effect transistor, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 44 (4A), 1596-1598, 2005.
[79] Liu, N. Y., Cai, X. P., Lei, Y., Zhang, Q., Chan-Park, M. B., Li, C. M., Chen, W. and Mulchandani, A.: Single-walled carbon nanotube based real-time organophosphate detector, Electroanalysis, 19 (5), 616-619, 2007.
[80] Ahuja, T., Mir, I. A., Kumar, D. and Rajesh: Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials, 28 (5), 791-805, 2007.
[81] Dong, H., Li, C. M., Zhang, Y. F., Cao, X. D. and Gan, Y.: Screen-printed microfluidic device for electrochemical immunoassay, Lab Chip, 7, 1752-1758, 2007.
[82] Hu, W. H., Li, C. M. and Dong, H.: Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors, Anal. Chim. Acta, 630 (1), 67-74, 2008.
[83] Dong, H., Cao, X. D., Li, C. M. and Hu, W. H.: An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing, Biosens. Bioelectron., 23 (7), 1055-1062, 2008.
[84] Hu, W. H., Li, C. M., Cui, X. Q., Dong, H. and Zhou, Q.: In situ studies of protein adsorptions on poly(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance, Langmuir, 23 (5), 2761-2767, 2007.
[85] Ramanathan, K., Bangar, M. A., Yin, M. H., Chen, W., Mulchandani, A. and Myung, N. V.: In situ fabrication of single poly(methyl pyrrole) nanowire, Electroanalysis, 19 (7-8), 793-797, 2007.
[86] Lange, U., Roznyatouskaya, N. V. and Mirsky, V. M.: Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta, 614 (1), 1-26, 2008.
[87] Miao, Z., Xu, D. S., Ouyang, J. H., Guo, G. L., Zhao, X. S. and Tang, Y. Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Lett., 2 (7), 717-720, 2002.
[88] Papp, S., Korosi, L., Meynen, V., Cool, P., Vansant, E. F. and Dekany, I.: The influence of temperature on the structural behaviour of sodium tri- and hexa-titanates and their protonated forms, J. Solid State Chem., 178 (5), 1614-1619, 2005.
[89] SZE, S. M., Semiconductor Device Physics and Technology. 3rd ed.; Wiley: New York, 2002; p 564.
[90] Maehashi, K., Matsumoto, K., Kerman, K., Takamura, Y. and Tamiya, E.: Ultrasensitive detection of DNA hybridization using carbon nanotube field-effect transistors, Jpn. J. Appl. Phys., 43 (12A), L1558-L1560, 2004.
[91] Cui, Y., Duan, X. F., Hu, J. T. and Lieber, C. M.: Doping and electrical transport in silicon nanowires, J. Phys. Chem. B, 104 (22), 5213-5216, 2000.
[92] Cosnier, S., Senillou, A., Gratzel, M., Comte, P., Vlachopoulos, N., Renault, N. J. and Martelet, C.: A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide, J. Electroanal. Chem., 469 (2), 176-181, 1999.
[93] Kum, M. C., Joshi, K. A., Chen, W., Myung, N. V. and Mulchandani, A.: Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application, Talanta, 74 (3), 370-375, 2007.
[94] Kwon, N. H., Rahman, M. A., Won, M. S. and Shim, Y. B.: Lipid-bonded conducting polymer layers for a model biomembrane: Application to superoxide biosensors, Anal. Chem., 78 (1), 52-60, 2006.
[95] Mohapatra, S. K., Misra, M., Mahajan, V. K. and Raja, K. S.: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode, J. Phys. Chem. C, 111 (24), 8677-8685, 2007.
[96] Vandamme, L. K. J., Li, X. S. and Rigaud, D.: 1/f noise in MOS devices, mobility or number fluctuations, IEEE Trans. Electron Devices, 41 (11), 1936-1945, 1994.
[97] Simoen, E. and Claeys, C.: On the flicker noise in submicron silicon MOSFETs, Solid-State Electron., 43 (5), 865-882, 1999.
[98] Hsiao, C. Y., Lin, C. H., Hung, C. H., Su, C. J., Lo, Y. R., Lee, C. C., Lin, H. C., Ko, F. H., Huang, T. Y. and Yang, Y. S.: Novel poly-silicon nanowire field effect transistor for biosensing application, Biosens. Bioelectron., 24 (5), 1223-1229, 2009.
[99] Pandana, H., Aschenbach, K. H., Lenski, D. R., Fuhrer, M. S., Khan, J. and Gomez, R. D.: A versatile biomolecular charge-based sensor using oxide-gated carbon nanotube transistor arrays, IEEE Sens. J., 8 (5-6), 655-660, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-02-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw