進階搜尋


下載電子全文  
系統識別號 U0026-0902201018563600
論文名稱(中文) 銫原子雙光子躍遷的精密量測
論文名稱(英文) Precision Measurements of Cesium Two-Photon Transitions
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英)
學年度 98
學期 1
出版年 99
研究生(中文) 李益志
研究生(英文) Yi-Chi Lee
學號 l7894113
學位類別 博士
語文別 英文
論文頁數 114頁
口試委員 指導教授-崔祥辰
口試委員-呂佳諭
口試委員-林泰生
口試委員-周哲仲
口試委員-蔡錦俊
口試委員-施宙聰
中文關鍵字 雙光子躍遷  電磁波誘發透明現象 
英文關鍵字 two-photon transitions  electromagnetically induced transparency 
學科別分類
中文摘要 都普勒增寬效應經常在原子光譜的譜線上扮演著主要的增寬效應,尤其是在室溫原子的光譜中。而為了精準的測量到原子譜線並且突破這些物理限制,光譜上免除都普勒效應的技術就被研發並且被應用在光譜學上,例如交錯原子束,飽和吸收光譜,雙光子光譜..等。在此篇博士論文中的主題是以雙光子躍遷的光譜技術來設計以及探討原子光譜中的一些物理現象與觀測結果。首先,我們建立了一套用來量測銫原子雙光子躍遷頻率的系統,用來觀測銫原子6S1/28S1/2 雙光子躍遷譜線的光學特性參數,例如自然線寬,雷射強度增寬,壓力增寬效應以及雷射光場和碰撞壓力產生的譜線躍遷偏移。我們利用Voigt函數以及反迴圈程式扣除雷射線寬所造成的效應,推估在實驗上量測到的銫原子6S1/28S1/2 躍遷譜線的自然線寬為1.03(9) MHz。6S1/28S1/2 躍遷頻率的偏移是藉由一台環型共振腔鈦藍寶石雷射與兩個自製的溫控銫原子腔體所量測而得到的,光偏移數值由實驗上數據推估為-7.25(45) Hz/(mW/mm2),與理論計算得到的數值非常接近-6.58 Hz/(mW/mm2)。另外一個設計的實驗為利用雙光子光譜的技術,來測量6S1/27D3/2,6S1/27D5/2 的躍遷頻譜,利用電光調制器(EOM)再頻率軸上產生一組重複的光譜訊號來校正實驗上的雷射頻率軸,而驅動電光調制器頻率是藉由Loren-C 所校準過的微波源,藉由分析7D3/2 ,5/2的頻譜訊號,我們可以決定出銫原子7D能階態的超精細常數,超精細常數主要包含有磁偶極常數A以及電四極常數B,藉由最小偏差法的數值擬合方式計算的超精細作用能量而取得的。在我們實驗上的數據分析可得知,7D5/2 能階的 A=-1.81(05)MHz、B=1.01(1.06)MHz,7D3/2 能階的 A=7.55(07) MHz、B=-0.62(87) MHz。
文章中的另一部分主要描述在銫原子系統中所觀測到的電磁波誘發透明現象(EIT),在銫原子的雙光子躍遷中觀測到量子干涉的現象,我們推估在我們觀測到的銫原子6S1/28S1/2雙光子躍遷譜線上的抑制現象可能是由於電磁波誘發透明現象所造成。這個現象主要是建構在藉由外界加入另一耦合雷射場在三能階系統中所造成的破壞性量子干涉現象。也因此同調性聚量捕捉現象是被侷限在這種多能階態的系統中,而造成雙光子躍遷的吸收被壓抑。而另外一個實驗,我們利用在室溫銫原子的D1 以及 D2 譜線中所觀測到的電磁波誘發透明現象,主要目的是利用一道未知雷射頻率掃過超精細結構來定義出已知在共振頻率上的另外一道雷射光頻率,我們觀測到V-type的EIT光譜以及光幫浦現象當這兩道雷射光共用相同的基態能階或是不同的基態能階。藉由這些光譜訊號我們可以來定義出在銫原子的 D1 譜線上未知能態的超精細躍遷譜線。
論文的最後部分,我將介紹有關實驗室中的光頻梳雷射系統。對於頻率量測以及雷射光譜學來說,建立一套標準的量測系統是非常重要且必須的一項研究,由於近年來超快雷射的發明以及鎖模技術的拓展,已經有不少研究團隊進行建構一套精準量測的系統。因此,於現有的系統上,將建構一套飛秒光頻梳雷射系統從可見光到近紅外光區域來做光譜的絕對頻率量測,並且穩定雷射的重覆率以及偏差頻率。藉由飛秒鎖模雷射以及光子晶體光纖,我們可以將光頻梳雷射的頻率範圍展頻從可見光到進紅外光波段。光子晶體光纖輸出的脈衝將可以被延展成具有相同間距,頻率非常廣大且涵蓋所有可見光波段的的頻梳譜線,未來想要將前面所量測到的雙光子躍遷訊號借由鎖頻技術再傳送到光頻梳雷射系統上做更精準的頻率測量。
英文摘要 Doppler broadening is usually the dominant contribution to the observed width of lines in atomic spectra, usually at room temperature. The techniques of Doppler-free laser spectroscopy overcome this limitation to give much higher resolution. There are some techniques used for this purpose: the crossed-beam method, saturated absorption spectroscopy and the two-photon spectroscopy. In this thesis, we design three experiments for measuring the optical properties of transitions and discussing the physical phenomenon by the two-photon transitions. We observed the cesium 6S1/28S1/2 two-photon transitions and measured the parameters of the transitions including natural linewidth, power broadening, pressure broadening and light shift and pressure shift. By fitting a Voigt profile and de-convolution of the laser linewidth using the Lorentzian profiles, the natural linewidth of cesium 6S1/28S1/2 two-photon transition is estimated to be 1.03(9) MHz. The frequency shift associated with the cesium 6S1/28S1/2 two-photon transition is measured as a function of laser power by using a ring cavity single-frequency Ti:sapphire laser and two thermally stabilized cesium cells. The light shift of approximately -7.25(45) Hz/(mW/mm2) agrees closely with the theoretical value -6.58 Hz/(mW/mm2). Meanwhile, the two-photon transitions of cesium 6S1/27D3/2, 6S1/27D5/2 are also observed in the system. By using the modulations of EOM with calibrated RF frequency referenced to the Loren-C, the hyperfine coupling constants of 7D3/2 ,5/2 can be determined from the spacing of the spectra. The hyperfine constants including magnetic dipole coupling constant A and electric quadrupole coupling constant B are obtained from two-photon signals of 7D3/2 ,5/2 states. The splitting intervals from the spectra were fitted to a convolution of Lorentzian profiles by Mathematica programming with the energy splitting formula. The hyperfine coupling constants are:
7D5/2 : A=-1.81±0.05 MHz、B= 1.01±1.06 MHz,
7D3/2 : A= 7.55±0.07 MHz、B=-0.62±0.87 MHz。

Second part is the electromagnetically induced transparency (EIT) in the cesium atomic system. The quantum interference phenomena of resonant two-photon transitions in cesium atomic ensemble is observed in the system. The suppression and enhancement of two-photon transitions in cesium 6S1/28S1/2 caused by EIT or nonlinear optical processes were investigated. These phenomena are established in the destructive interference between three energy levels and the increasing transition probabilities on the wing of two-photon absorptions by adding a coupling field into the two-photon transitions. Therefore, the coherent population trapping is preserved in the multilevel system, and the two-photon absorption is suppressed or enhanced. The other one is that we observed the phenomena of EIT and optical pumping in cesium D1 and D2 lines at room temperature. A known on-resonance laser beam was used to label a hyperfine transition while the unknown laser scanned over another hyperfine transition. A spectrum of V-type EIT or optical pumping will be observed depending on these two lasers shared with a common ground state or not. Therefore, these signals can be used to identify the unknown hyperfine transitions of D1 line.

The final part of the thesis, I will introduce about the optical frequency comb system in the lab. For precision measurement and frequency metrology, optical frequency standards are important and necessary. Locking on the narrow Doppler-free transitions is required the great efforts on the frequency stabilization, accuracy. Here, we establish the femtosecond optical frequency comb system for the absolute frequency measurement from visible to near infrared and stabilizing the repetition frequency and the offset frequency. With the femtosecond mode-locked laser and photonic crystal fiber, the frequency comb can be realized from visible to near infrared region. The output pulse after passing through a photonic crystal fiber will be extended into “comb” line which has equal spacing, very broad light sources and covers all the visible spectrum. The optical frequency comb can provide the accuracy of the optical frequency measurements to the higher order.
論文目次 Abstract ………………………………………………. i
論文摘要 ……………………………………………….. iii
致謝 ………………………………………………….… iV
List of Figures ………………………………………….. Viii
List of Tables ……………..…………………………………Xi
Chapter 1 Introduction…………………………….. 1
1.1 Research Background……………………… 1
1.2 Frequency Standard on Atomic Transitions… 2
1.3 Overview of the Thesis…………………….. 5
Chapter 2 Optical Properties of Cs 6S-8S
Two-photon Transitions ……………….. 7
2.1 Introduction…………………………….…… 7
2.2 Cesium Atomic Structure…………………… 8
2.3 Two-Photon Transitions Theory (TPT)…….. 12
2.4 Cs 6S-8S Two-Photon Spectroscopy……….. 18
2.5 Experimental Results and Discussion……….. 20
2.6 Cs 6S-9S Two-Photon Transitions in room Temperature…………………………………. 26
2.7 Summary……………………………………... 28
Chapter 3 Determining the Cesium Hyperfine Coupling Constants of 7D states with Two-photon Transitions… …………….. 29
3.1 Introduction………………………………….. 29
3.2 Hyperfine Structure …………………………. 30
3.3 Cs 6S-7D Two-Photon Spectroscopy Setup… 37
3.4 Experimental Results and Discussion……….. 40
3.5 Summary ……………………………………… 46
Chapter 4 Suppression of Two-photon transition by
Quantum Interference Effect in Atomic
System…………………………………………. 50
4.1 Introduction……………………………………… 50
4.2 Electromagnetically Induced Transparency(EIT) ..52
4.3 Observation of Suppression Effect in TPT………54
4.4 Experimental Results and Discussion…………….56
4.5 Theoretical Discussions ………………………… 65
4.6 Using EIT with Optical Pumping to Assign the Hyperfine Transitions………………………….. 71
4.7 Summary………………………………………… 77
Chapter 5 Optical Frequency Comb……………………. 79
5.1 A Brief Introduction and Review………………. 79
5.2 Femtosecond Mode Locked Laser……..…………81
5.3 The Super-Continuum and Offset Frequency…….84
5.4 The Optical Setup of Optical Frequency Comb
System……………………………………………87
5.5 Summary………………………………………..94
Chapter 6 Conclusions & Prospects …………….….96
6.1 Conclusions …………...………………………… 96
6.2 Future work ………………………………………98
Appendix A …………………………………………………… 100
Appendix B……………………………………………………101
Appendix C……………………………………………………105
References…..………………………………………………… 108
參考文獻 [1] A. J. Angstrom, K. Sven. Vetenskapsakad. Handl, 327 (1852).
[2] A. , 94, 141 (1855).
[3] J. J. Balmer, 25, 80 (1885).
[4] J. R. Rydberg, K. Sven. Vetenskapsakad. Handl, 32, 80 (1890).
[5] T. W. Hansch, I. S. Shahin, and A. L. Schawlow, Phys. Rev. Lett. 27, 707
(1971).
[6] J. A. Myer, C. L. Johnson, E. Kierstead, R. D. Sharma, and I. Itzkan, Appl. Phys.
Lett. 16, 3 (1970).
[7] R. Teets , R. Feinberg, T. W. Hansch, and A. L. Schawlow, Phys. Rev. Lett. 37,
683 (1976).
[8] B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. 34, 845 (1973).
[9] J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S.
Cundy, Phys. Rev. Lett. 82, 3228 (1999).
[10] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, and F.
Biraben, Phys. Rev. Lett. 82, 4960 (1999).
[11] J. Levine, Rep. Prog. Phys. 65, 1119 (2002).
[12] J. Levine, Rev. Sci. Instrum. 70, 2567 (1999).
[13] J. R. Zacharias, Phys. Rev. 94, 751 (1954).
[14] W. M. Itano, Proc. IEEE 79, 936 (1991).
[15] J. D. Prestage, G. J. Dick, and L. Maleki. IEEE Trans. Instrum. Meas. 40, 132
(1991).
[16] Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W.
M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg. Phys. Rev. Lett. 86,
4996 (2001).
[17] J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, and H. R. Telle. Phys. Rev. A.
63, 021802 (2001).
[18] P. V. Pokasov, R. Holzwarth, Th. Udem, J. Reichert, M. Niering, M.
Zimmermann, M. Weitz, T. W. Hansch, A. K. Dmitriev, S. N. Bagayev, P.
Lemonde, G. Santarelli, P. Laurent, M. Abgrall, A. Clairon, and C. Salomon in
Proceedings of the Sixth Symposium on Frequency Standards and Metrology. (P.
Gill ed) 510, World Scientific, Singapore (2002).
[19] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, J. K. Ranka,
and R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hansch. Phys. Rev.
Lett. 84, 5102 (2000).
[20] J. Ye, T. H. Yoon, and J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L.
Marmet, J. M. Chartier, and A. Chartier. Phys. Rev. Lett. 85, 3797 (2000).
108


[21] M. A. Lombardi. Cal Lab Magazine, July-September (2001).
[22] http://nobelprize.org/nobel_prizes/physics/laureates/2005/
[23] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[24] 64, 1107 (1990).
[25] ev. Lett. 66, 2593 (1991).
[26] S. E. Harris, Phys. Today 50, 36 (1997).
[27] M. M. Salour, Rev. Mod. Phys. 50, 667 (1978).
[28] M. Goppert-Mayer, Ann. Phys. 9, 273 (1931).
[29] V. W. Hughes and L. Grabner, Phys. Rev. 79, 314 (1950).
[30] I. D. Abella, Phys. Rev. Lett. 9, 453 (1962).
[31] Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W.
Hansch, Phys. Rev. Lett. 79, 2646 (1997).
[32] D. Das and V. Natarajan, Phys. Rev. A. 75, 052508 (2007).
[33] M. P. Bradley, J. V. Porto, S. Rainville, J. K. Thompson, and D. E. Pritchard,
Phys. Rev. Lett. 83, 4510 (1999).
[34] D. A. Steck , http://stceck.us/alkalidata (1998).
[35] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Phys. Rev. A. 60,
3648 (1999).
[36] L. Young, W. T. Hill, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman,
and S. R. Leone, Phys. Rev. A. 50, 2174 (1994).
[37] C. E. Tanner, D. J. Wineland, C. E. Wieman, and S. J. Smith, The Fourteenth
International Conference on Atomic Physics, Eds. (1995).
[38] W. Demtroder, Laser Spectroscopy, Springer, Berlin (2003).
[39] C. J. Foot, Atomic Physics, Oxford University Press (2005).
[40] A. Corney, Atomic and laser spectroscopy, Oxford University Press (2000).
[41] The Coherent website ( http://www.coherent.com/)
[42] K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, Jpn. J. Appl. Phys. 39,
5310 (2000).
[43] 陳英昱,Electromagnetically induced transparency of Cs 6S-8S two-photon
transition,國立成功大學 物理研究所 碩士論文 (2008).
[44] B. H. Bransden and C. J. Joachain, Phsyics of atoms and molecules, Pearson
Education India (2003).
[45] G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt.
Comm. 160,1 (1999).
[46] A. Lindgard, S. E. Nielsen, Atomic Data Nuclear Tables, 19, 533 (1977).
[47] P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Ha nsch, Opt. Lett. 32, 701
109


(2007).
[48] W. D. Lee, J. H. Shirley, J. P. Lowe, and R. E. Drullinger, IEEE transactions on
instrumentation and measurement. 44, 120 (1995).
[49] P. P. Herrmann, J. Hoffnagle, A. Pedroni, N. Schlumpf, and A. Weis, Opt.
Comm. 56, 22 (1985).
[50] C. Fort, M. Inguscio, P. Raspollini, F. Baldes, and A. Sasso, Appl. Phys. B. 61,
467 (1995).
[51] C. Y. Cheng, C. M. Wu, G. B. Liao, and W. Y. Wang, Opt. Lett. 32, 563 (2007).
[52] M. Bellini, A. Bartoli, and T. W. Hansch, Opt. Lett. 22, 540 (1997).
[53] Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, accepted by
Opt. Commun.
[54] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, Opt. Commun. 102, 432
(1993).
[55] Th. Udem, J. Reichert, and T. W. Hansch, Phys. Rev. A. 62, 031801 (2000).
[56] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, Phys. Rev. Lett. 82,
3568 (1999).
[57] D. H. McIntyre, R. G. Beausoleil, C. J. Foot, E. A. Hildum, B. Couillaud, and T.
W. Hansch, Phys. Rev. A. 39, 4591 (1989).
[58] M. G. Boshier, P. E. G. Baird, C. J. Foot, E. A Hinds, M. D. Plimmer, D. N.
Stacey, J. B. Swan, D. A. Tate, D. M. Warrington, and G. K. Woodgate, Phys.
Rev. A. 40, 6169 (1989).
[59] S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F.
Biraben, and D. N. Stacey, Phys. Rev. Lett. 76, 384 (1996).
[60] D. Das and V. Natarajan, Phys. Rev. A. 75, 052508 (2007).
[61] F. Biraben, B. Cagnac, and G. Grynberg, Phys. Rev. Lett. 32, 643 (1974).
[62] F. Biraben, B. Cagnac, and G. Grynberg, Phys. Rev. Lett. 39, 1473 (1977).
[63] Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T.W.
Hansch, Phys. Rev. Lett. 79, 2646 (1997).
[64] J. E. Simsarian, W. Z. Zhao, L. A. Orozco, and G. D. Sprouse, Phys. Rev. A. 59,
195 (1999).
[65] L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson,
Europhys. Lett. 50, 454 (2000).
[66] M. Zhu, C. W. Oates, and J. L. Hall, Opt. Lett. 18, 1186 (1993).
[67] D. Pritchard, J. Apt, and T. W. Ducas, Phys. Rev. Lett. 32, 641 (1974).
[68] S. Weyers, U. Hubner, R. Schroder, C. Tamm, and A. Bauch, Metrologia, 38,
343 (2001).
[69] 張益修, Measurement of the 6S-7D Hyperfine Structure of Cesium using
110


Two-Photon Spectroscopy, 碩士論文, 國立成功大學物理學系 (2009).
[70] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[71] R. J. Rafac, and C. E. Tanner, Phys. Rev. A. 56, 1027 (1997).
[72] W. Yei, A. Sieradzan, E. Cerasuolo, and M. D. Havey, Phys. Rev. A. 57, 3419
(1998).
[73] V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501
(2003).
[74] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev. A. 63, 062101
(2001)
[75] M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U.
I. Safronova, and M. Tamanis, Phys. Rev. A. 75.022502 (2007).
[76] A. Kortyna, V. Fiore, and J. Farrar, Phys. Rev. A. 77. 062505 (2008).
[77] E. Arimondo, M. lnguscio, and P. Vilino, Rev. Mod. Phy. 49, 31 (1977).
[78] G. Belin, L. Holmgren, and S. Svanberg, Physica Scripta, 14, 39 (1976).
[79] B. R. Bulos, R. Gupta, G. Moe, and P. Tsekeris, Phys. Lett. 55A, 407 (1976).
[80] S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A. 46, R29 (1992).
[81] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[82] K. Petr, T. Ioannis, and S. Moshe, Rev. Mod. Phys. 79, 53 (2007).
[83] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B. 36, 5 (1976).
[84] K. J. Boller, A. Imamolu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[85] J. E. Field, K. H. Hahn, and S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).
[86] S. E. Harris, and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).
[87] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji ,
Phys. Rev. Lett. 61, 826 (1988).
[88] M. O. Scully, and S. Y. Zhu, A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).
[89] S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[90] G. S. Agarwal, G. Vemuri, and T. W. Mossberg, Phys. Rev. A. 48, R4055
(1993).
[91] G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D.
Lukin, and M. O. Scully, Phys. Rev. Lett. 76, 2053 (1996).
[92] G. S. Agarwal, and W. Harshawardhan, Phys. Rev. Lett. 77, 1039 (1996).
[93] S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin , Phys.
Rev. A. 68, 063801 (2003).
[94] H. Wang, D. Goorskey, M. Xiao, and Enhanced Kerr, Phys. Rev. Lett. 87,
073601 (2001).
[95] M. Mitsunaga, and N. Imoto, Phys. Rev. A. 59, 4773 (1999).
[96] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Phys.
111


Rev. Lett. 74, 670 (1995).
[97] S. Z. Jin, Y. Q. Li, M. Xiao, Opt. Commun. 119, 90 (1995).
[98] A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, Europhys. Lett. 72, 221
(2005).
[99] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003
(2007).
[100] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys.
Rev. A. 52, 2302 (1995).
[101] 張瑞園, Quantum Interference on Dressed-Atom and L-uncoupling on Diatomic
Molecule, 博士論文, 國立成功大學 物理研究所 (2007).
[102] C. Cohen-Tannoudji, J. D. Roc, G. Grvnberg, Atom Photon Interaction, John
Wiley and Sons, New York, 1992.
[103] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
[104] H. R. Gray, and C. R. Stroud, Opt. Commun. 25, 359 (1978).
[105] D. J. Gauthier, J. Chem. Phys. 99, 1618 (1993).
[106] M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Phys. Rev. Lett. 55, 1086
(1985).
[107] G. S. Agarwal, and W. Harshawardhan, Phys. Rev. Lett. 77, 1039 (1996).
[108] M. Yan, E. G. Rickey, and Y. Zhu, Phys. Rev. A. 64, 043807 (2001).
[109] B. P. Hou, S. J. Wang, W. L. Yu, and W. L. Sun, Phys. Rev. A. 69 053805
(2004)
[110] J. H. Xu, G. C. La Roccaa, F. Bassania, D. Wang, and J. Y. Gao, Opt. Comm.
216, 157 (2003).
[111] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Massachusetts,
1994.
[112] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Phys. Rev. A. 60,
3648 (1999).
[113] G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, Opt. Commun. 20, 289
(1977).
[114] U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E.
P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 411 (1999).
[115] D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U.
Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
[116] J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[117] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L.
Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland,
112


Science, 293, 825 (2001).
[118] A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.
W. Hansch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[119] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall,
and S. T. Cundiff, Science 288, 635 (2000).
[120] Tunable
Lasers and Applications, edited by A. Mooradain, T. Jaeger, and P. Stokseth
(Springer, Berlin), 326 (1976).
[121] Y. V. Baklanov, and V. P. Chebotayev, Appl. Phys. 12, 97 (1977).
[122] R. Teets, J. Eckstein, and T. W. Hansch, Phys. Rev. Lett. 38, 760 (1977).
[123] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, Opt. Lett. 24, 881
(1999).
[124] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, Phys. Rev. Lett. 82,
3568 (1999).
[125] J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L.
Marmet, J. M. Chartier, and A. Chariter, Phys. Rev. Lett. 85, 3797 (2000).
[126] C. M. DePriest, T. Yilmaz, P. J. Delfyett, S. Etemad, A. Braun, and J. Abeles.
Opt. Lett. 27, 719 (2002).
[127] F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett. Opt. Lett. 31, 2870 (2006).
[128] J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff. Opt.
Express, 10, 1404 (2002).
[129] H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. Telle. Opt.
Express, 12, 770 (2004).
[130] F. Tauser, A. Leitenstorfer, and W. Zinth. Opt. Express, 11, 594, (2003).
[131] H. R. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, and U. Keller,
Appl. Phys. B. 69, 327 (1999).
[132] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall,
and S. T. Cundiff. Science, 288, 635 (2000).
[133] J. K. Ranka, R. S. Windeler, and A. J. Stentz. Opt. Lett. 25, 25, (2000).
[134] R. Ell, U. Morgner, F. X. Krtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G.
Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther Davies. Opt. Lett.
26, 373 (2001).
[135] J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hansch. Opt. Comm. 172, 59,
(1999).
[136] K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye. Opt. Lett. 28,
851 (2003).
[137] K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye. IEEE J. Sel.
Top. Quantum Electron. 9, 1018 (2003).
113


[138] T. M. Fortier, D. J. Jones, and S. T. Cundiff, Opt. Lett. 28, 2198 (2003).
[139] T. M. Ramond, S. A. Diddams, and L. Holberg, Opt. Lett. 27, 1842 (2002).
[140] 崔祥辰, “Absolute Frequency Standards for Optical Communication Band ,
博士論文,國立清華大學電機工程學系 (2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-02-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-02-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw