進階搜尋


下載電子全文  
系統識別號 U0026-0901202005275800
論文名稱(中文) 主表面換熱器性能的計算研究
論文名稱(英文) COMPUTATIONAL STUDY ON PERFORMANCE OF PRIMARY SURFACE RECUPERATOR
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 1
出版年 109
研究生(中文) 喬立西
研究生(英文) Josula Rishi
學號 P46077022
學位類別 碩士
語文別 英文
論文頁數 50頁
口試委員 指導教授-賴維祥
口試委員-葉思沂
口試委員-闕志哲
中文關鍵字 ANSYS  CFD  換熱器  複熱器  主表面複熱器  儲熱器  微型渦輪機 
英文關鍵字 ANSYS  CFD  Recuperator  Primary Surface Heat Exchanger  Heat Exchanger  Micro Turbine 
學科別分類
中文摘要 主表面換熱器(或稱複熱器)設計與微型燃氣渦輪機整合在一起,以回收從渦輪機出來的廢熱,並提高發動機循環的熱效率。本研究工作包含了設計和分析,其設計目標是更高的效率和更低的壓力損失。
本研究設計了幾種具有主表面的換熱器,並對主要表面幾何形狀進行了設計計算。利用有限元商業軟體(ANSYS)用於對換熱器的幾何形狀進行建模,網格劃分和分析。從設計中獲得的結果;總壓降在設計的允許極限內,效率為81.8%,在設計2中,儘管壓力損失僅比限制稍大,但其效率約為83.4%,這比參考Capstone模型的效率86.4%小。
英文摘要 Primary surface recuperator have been designed for integration with the micro gas turbine to recover waste heat coming out of the turbine and to improve the thermal efficiency of the engine cycle. This work covers the design and the analyses with the objective of higher effectiveness and lower pressure loss.
The recuperator with a primary surface has been designed. A finite element commercial package (ANSYS) is used for modelling, meshing and analyses of recuperator geometry.
Design calculations were carried out for primary surface geometry. The results obtained from the design; the total pressure drop is within allowable limit (4%) for design 1 and the effectiveness is 81.8% and in design 2 though the pressure loss is just little more than the limitation its effectiveness is about 83.4% which is little less than that of reference capstone model with effectiveness upto 86.4% .
論文目次 Table of content
摘要…………………………………………………………………I
Abstract…………………………………………………………………II
Acknowledgement……………………………………………………….III
Table of content…………………………………………………….IV
List of figures and tables………………………………………….VII
Nomenclature…………………………………...………………….X
Chapter 1: Introduction…………………………………………….1
1.1 Motivation and micro gas turbine............……………1
1.2 Recuperator……………………………………………………...3
Chapter 2: Literature Survey……………………………………….5
2.1 Basic theoretical design calculation methods of recuperator…5
2.2 The log-mean temperature difference (LMTD) method…………….……...6
2.3 The ε- NTU method…………………….………………………. …….….9
2.4 The φ – P method…………………………………………………..........10
2.5 The P1 – P2 method……………………………………...…….………...11
2.6 Requirements for recuperator in micro gas turbine……………….……..13
2.7 Types of recuperator for micro gas turbines…………………………….13
2.8 Material selection and manufacturing of recuperator………..…..…….17
2.9 Low cost primary surface recuperator…………………………….…….18
Chapter 3: Problem Statement……………………………………………….21
Chapter 4: Design and analysis of annular primary surface recuperator.……...26
4.1 Design procedure of selected geometry……………………..….…....26
4.2 Finite element modelling…………………………………….…..28
4.3 Materials for recuperator……………...……………………………..….29
4.4 Boundary conditions ……………...………………………………….....29
Chapter 5: Design of basic and capstone type of recuperator Model….…….30
5.1 Original recuperator design ………… ………………………...………….30
5.2 Capstone recuperator design………………...…………………………......32
5.3 Computational model of heat transfer and pressure drop………….………33
5.4 Results and analysis of capstone type of recuperator model……..………38
Chapter 6: Results and discussions…………………………………………….46
Chapter 7: Conclusions………………………………………………………...48
References……………………………………………………………….49
參考文獻 [1] Ahmet Z. Sahin, “Thermodynamic Design Optimization of a Heat Recuperator,” Int Heat and Mass Transfer, Vol.24, no.7, pp.1029-1038, 1997.
[2] C.F. McDonalds, “Gas Turbine Recuperator Technology Advancements,” ASME paper 72-GT-32, 1972.
[3] Colin F. McDonald, “Low Cost compact primary surface recuperator concept for microturbines” Applied thermal engineering 20 471-497, 2000.
[4] Cuneyt Ezgi, “Basic design methods of heat exchanger,” http://dx.doi.org/10.5772/67888, 2017.
[5] Capstone Turbine Corporation, Shale Gas Utilization: A Distributed Generation Case Study, September 2014
[6] Dr. Ing. Dissertation, T.H. Aachen, “Auslegung eines neuartigen kompakten rekupators,” Germany,1978.
[7] Esa Utriainen, Bengt Sunden “A comparison of some heat transfer surfaces for small gas turbine recuperators,” ASME turbo expo 2001.
[8] Gang Xiao*, Tianfeng Yang, Huanlei Liu, Dong Ni, Mario Luigi Ferrari, Mingchun Li, Zhongyang Luo, Kefa Cen, Mingjiang Ni, “Recuperators for micro gas turbines: A review,” Applied energy 197, pp.83-99, 2017.
[9] https://www.enertwin.com/enertwin-en/the-micro-turbine-technology.
[10] Jun Cai*, Xiulan Huai, Wenxuan Xi, “An optimal design approach for the annular involute profile cross wavy primary surface recuperator in microturbine and an application case study,” Energy 153, pp.80-89, 2018.
[11] Liu Zhenyu*, Cheng Huier, “Multi objective optimization design analysis of primary surface recuperator for microturbines,” Applied Thermal Engineering 28(5): pp.601-610 2008.
[12] M. Kleeman, “Neuartiger kompakter rekuperator in pattenbauweise, Brennst,” Warme-Kraft 31 (6) 1979.
[13] P. Fraas and M. Necati Ozisik, “Heat Exchanger design,” John Wiley Sons Inc 1989.
[14] Shah, R.K, “Compact heat exchangers for microturbine,” Micro gas turbine (pp.2-1-2-18), 2005.
[15] T. Stevens*, F. Verplaetsen, M. Baelmans, “Requirements for recuperators in micro gas turbines,” PowerMEMS, Japan 2004.
[16] Yung-Mao Tsuei1*, Sin-Mao Wu2, Chih-Chuan Lee3, Reed-Joe Chang, “Design of Primary Surface Recuperator Used on Microturbines,” ICOIAM- Taiwan,2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw