進階搜尋


下載電子全文  
系統識別號 U0026-0901201810103200
論文名稱(中文) 修飾奈米材料的表面作為光學檢測重金屬的奈米探針
論文名稱(英文) Modification Nanomaterial Surface for Optical Nanoprobe of Detection of metal cations
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 106
學期 1
出版年 106
研究生(中文) 鄭宏仁
研究生(英文) Hung-Jen Cheng
學號 L38981125
學位類別 博士
語文別 英文
論文頁數 60頁
口試委員 指導教授-桂椿雄
口試委員-吳家誠
口試委員-劉陵崗
口試委員-黃平志
口試委員-李俊福
口試委員-何國榮
口試委員-熊同銘
中文關鍵字 光學奈米探針  銀奈米粒子(Ag NPs)  六價鉻  碳點(CDs)  螢光探針  邏輯閘道  螢光抑制  金屬陽離子 
英文關鍵字 Optical nanoprobe  Silver nanoparticles (Ag NPs)  Hexavalent chromium (Cr6+)  Carbon dots (CDs)  Fluorescent probe  Logic Gates  Fluorescent quenching  Metal cations 
學科別分類
中文摘要 光學奈米探針是一種藉由奈米材料本身所具備的光學性質,會隨特定分析物濃度變化的光學偵測技術。奈米物質為其自身尺度大小介於1奈米到100奈米之間,此時,物質本身的物理化學性質會因尺度奈米化後,而和巨觀上有所不同,如:碳變成碳點時,就會具有螢光性質;或銀變成銀奈米時,會因局部表面電漿共振(localized surface plasma resonance, LSPR )而導致顏色變黃等等。貴重金屬(如:金和銀)所製備成的奈米粒子(noble metal nanoparticles, NMPs),由於其LSPR所吸收的光介於紫外光¬-可見光範圍內,因此,常被用作為重金屬或小分子有機化合物的快速偵測。
一鍋化反應合成的三甲基十六烷基銨(CTA)修飾酒石酸根組裝的銀粒子(CTA-TA/Ag NPs)經紅外光光譜儀、動態光散色儀和穿透式電子顯微鏡等儀器鑑定後,確認其為奈米尺寸(水溶液中分布約為10~40奈米間(水合直徑)),且於酸性溶液中可偵測汞和六價鉻。而其作用原理為六價鉻在酸性溶液會進行氧化還原反應並侵蝕銀奈米粒子,導致銀奈米粒子崩解和LSPR吸收的改變;而當其與汞離子作用時,汞離子(Hg2+)會被還原成元素汞(Hg0),進而沉積在銀奈米粒子表面,此種蝕刻銀奈米粒子並沉積在其表面的作用,不僅會使其產生較小的粒子(暫時被汞層保護,而不會再被蝕刻),還會使得在銀奈米粒子所產生的表面電漿共振(SPR)吸收光,產生藍位移(blue shift)的現象。而在選擇性的分析上,CTA-TA/Ag NPs與其他13種常存在分析溶液中的金屬離子測試後,均不會發生明顯的光學變化,因此,可以有效用來辨別樣品中是否含有汞或六價鉻離子。而當將維他命C加入樣品後,再使用CTA-TA/Ag NPs來偵測,此時,僅會單一辨識汞。使用CTA-TA/Ag NPs作為光學奈米探針,其偵測六價鉻時的最低偵測極限為0.15μM,線性範圍為0.2 μM到17.5 μM,汞的最低偵測極限為0.08μM,線性範圍為0.25 μM到3.0 μM。
使用一鍋化步驟將乙二胺、半胱胺酸(Cys)、組胺酸(His)、賴胺酸(Lys)或精胺酸(Arg)等物質修飾於已先合成出的碳奈米量子點(碳點)表面,經紅外光光譜儀、動態光散色儀和穿透式電子顯微鏡等儀器鑑定其物理性質後,結果發現修飾不同官能基的碳點,不但電子能階狀態已被微調,且還能鉗合特定金屬離子於奈米碳點表面,進而產生螢光抑制或增強的效果。表面官能基不同的碳點,可用來偵測不同的金屬離子,而在溶液接近中性時,所有經過表面修飾的碳點,偵測特定金屬陽離子的濃度範圍,為介於10 ppb~100 ppb。最佳條件下,個別金屬離子的偵測極限分別為汞(II):20.5 ppb、銅(II):10.2 ppb、鋅(II):8.8 ppb、鐵(III):24.6 ppb,、鉻(III):2.3 ppb。
因此,不論是銀奈米粒子或是碳點均可應用於水中重金屬離子的檢測。銀奈米粒子可用來辨識難以區別的六價鉻和三價鉻,且在加入維他命C後,可快速辨別檢液中是否含有汞,具有檢測商品中是否含有危害物質(Hg2+Cr6+)的能力,相較之下,修飾不同官能基的碳點就可以轉換成邏輯線路並作為連接微處理器使用的光電子奈米探針,這是一種具高潛力且可快速的處理大量水質樣品的探針。
英文摘要 The optical nanoprobes made up of nanomaterials with recognition units, have the optical signal intensity vary depended on the concentration of the analyte(s). Materials reducing the size or length between 1nm and 100 nm can exhibit a size-related property that is quite different from macroscopic scales, such as the localized surface plasmon resonance(LSPR) or the fluorescence. Noble metal nanoparticles(NMPs), such as gold(Au) and silver(Ag), possessing the SPR frequency can absorb the wavelength between 200nm and 800 nm (UV-Vis range), have been developed as a colorimetric probe for detection of heavy metal or small organic molecule.
Tartrate-capped silver nanoparticles modified by cetyl trimethyl ammonium (CTA-TA/Ag NPs) were synthesized via one pot synthesis and confirmed by transmission electron microscopy, IR spectrometry, and Dynamic Light Scatter. CTA-TA/Ag NPs can redox with mercury ion (Hg2+) and hexavalent chromium (Cr6+) at around pH 2. While Cr6+ devastated Ag NPs via the redox reaction, the Ag NPs will vanish and result in diminishing of the LSPR absorption. When Ag NPs were oxidized by Hg2+, it is not only etched but also formation of Hg0-Ag nanoalloy on the Ag NPs surface. This kind of reaction will reduce the particle size and cause the blue shift of the LSPR absorbance. Comparing the LSPR change of CTA-TA/Ag NPs mixed with other 13 common ions, the selectivity is excellent for Hg2+ and Cr6+. While the sample solution mixed with vitamin C, the probe is specifically to detect Hg2+. The detection limit of Hg2+ and Cr6+ ions are 0.08 μM and 0.15 μM, respectively. The linearity is ranging from 0.25 μM to 3 μM for Hg2+ and from 0.2 μM to 17.5 μM for Cr6+.
On the other hand, carbon nanodots (CDs) modified with ethylene diamine and the amino acids (AAs) Cys, His, Lys or Arg were synthesized by one pot procedure, and their structures were confirmed by high resolution transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectrometry. It is found that derivatization the N-doped carbon dots with various AAs systemically modulates their electronic properties, and this results in a tunable selectivity in detection of metal cations via fluorescence quenching. The assays can be performed in aqueous solutions at near-neutral pH values. The drop of fluorescence is directly proportional to the concentration of metal cations in the 1 to 100 ppb range, and the limits of detection are 20.5 ppb, 10.2 ppb, 8.8 ppb, 24.6 ppb, 2.3 ppb, respectively, for Hg(II), Cu(II), Zn(II), Fe(III), and Cr(III).
Both Ag NPs and CDs based probes can be applied to detection of heavy metals in the water sample. CTA-TA/Ag NPs can effectively distinguish Cr6+ from Cr3+. Moreover, the Ag NPs can singlely detect Hg2+ when vitamin C was pre-mixed. It turns to a powerful tool for judging the product wether containing the hazard element, Cr6+ and Hg2+, or not. In the other word, the AA-modified CDs with the different fluorescence response can be converted to logic gates and applied to photoelectronic nanoprobes by using microprocessors. This assay has a large potential in terms of high-throughput screening for trace amounts of metal ions.
論文目次 中文摘要 I
Abstract III
誌謝 V
List of tables IX
List of figures X
Chapter 1 Introduction 1
1.1 Metal Nanoparticles based Colorimetric Nanoprobe 1
1.1.1 Optical Absorption Properties of NMPs 1
1.1.2 Strategies of Colorimetric Nanoprobes 3
1.1.3 Synthesis of colorimetric nanoprobes 6
1.2 Carbon dots 8
1.2.1 Carbon dots as Fluorescence nanoprobe 8
1.2.2 Synthesis of Functionalized Carbon dots 10
1.3 The introduction of heavy metal: 11
1.4 Overview of this thesis 12
Chapter 2 Experiments 13
2.1. Reagents 13
2.2 Apparatus 14
2.3 Preparation of CTA modified Tartrate-capping Ag NPs(TA/AgNPs) 14
2.4 Preparation of all CDs 15
2.5 Verification of the nanomaterials of CTA-TA/Ag NPs and all CDs 16
2.6 Preparartion of the water samples 16
Chapter 3 Characterization and the Results 17
3.1 Characterization of CTA-TA/Ag NPs 17
3.1.1 FT-IR spectra 17
3.1.2 Tranmission Electron Microscopy and Dynamic Light of Scatter 18
3.1.3 UV-VIS spectroscopy 18
3.2 Characterization of all CDs 19
3.2.1 XRD and HRTEM 19
3.2.2 FT-IR spectrum 21
3.2.3 Raman spectroscopy 22
3.2.4 XPS 23
3.2.5 Absorption and fluorescence 24
Chapter 4 Discussion and Application- the detection of heavy metals 27
4.1 Mechanism of CTA-TA/Ag NPs as the optical nanoprobe 27
4.1.1 The reaction time 28
4.1.2 The effect of pH 29
4.1.2 Selectivity and Sensitivity of the Ag NPs 29
4.1.3 Linearity and Limit of Detection 31
4.1.4 Sample Analysis 32
4.2 The C-dots as the fluorenscene nanoprobe 33
4.2.1 The effect of pH 33
4.2.2 The Selectivity and Sensitivity of all CDs 34
4.2.3 Linearity and Limit of Detection 35
4.2.4 CDs nanoprobe applied to Sample analysis 36
4.3 CONCLUSION 37
Chapter 5 Future Aspect 39
Reference 40
Appendix ...47
A1 Characteristics of CDs 47
A1-1 DLS of CDs 47
A1-2 XPS curved fitting data 48
A2 Comparing the sizes of CTA-TA/Ag NPs without or with Hg2+ or Cr6+ 52
A3 Calibration curve of all CD with its sensitive ions 53
A4 Inferences of CDs 54
A5 Ionic strength effect of CDs 54
A6 CDs comparison data from other references 55
References 57

參考文獻 [1] L. Chen, Y. Wang, X. Fu, and L. Chen, Novel optical nanoprobes for chemical and biological analysis. New York: Springer, 2014, p. pages cm.
[2] N. E. Motl, A. F. Smith, C. J. DeSantis, and S. E. Skrabalak, "Engineering plasmonic metal colloids through composition and structural design," (in English), Chemical Society Reviews, Review vol. 43, no. 11, pp. 3823-3834, 2014.
[3] S. W. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications," Chemical Society Reviews, vol. 43, no. 10, pp. 3426-3452, 2014.
[4] H. F. Zarick, A. Boulesbaa, E. M. Talbert, A. Puretzky, D. Geohegan, and R. Bardhan, "Ultrafast Excited-State Dynamics in Shape- and Composition-Controlled Gold-Silver Bimetallic Nanostructures," Journal of Physical Chemistry C, vol. 121, no. 8, pp. 4540-4547, Mar 2017.
[5] S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8410-8426, Oct 1999.
[6] S. Link, M. A. El-Sayed, and M. B. Mohamed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (vol 103B, pg 3073, 1999)," (in English), Journal of Physical Chemistry B, Correction vol. 109, no. 20, pp. 10531-10532, May 2005.
[7] B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chemistry of Materials, vol. 15, no. 10, pp. 1957-1962, May 2003.
[8] H. K. Sung, S. Y. Oh, C. Park, and Y. Kim, "Colorimetric Detection of Co2+ Ion Using Silver Nanoparticles with Spherical, Plate, and Rod Shapes," Langmuir, vol. 29, no. 28, pp. 8978-8982, Jul 2013.
[9] P. K. Jain and M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures," Chemical Physics Letters, vol. 487, no. 4-6, pp. 153-164, Mar 2010.
[10] D. Li, A. Wieckowska, and I. Willner, "Optical analysis of Hg(2+) ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines," Angewandte Chemie-International Edition, vol. 47, no. 21, pp. 3927-3931, 2008.
[11] L. Zhao, Y. Jin, Z. W. Yan, Y. Y. Liu, and H. J. Zhu, "Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI)," Analytica Chimica Acta, vol. 731, pp. 75-81, Jun 2012.
[12] A. Ravindran, M. Elavarasi, T. C. Prathna, A. M. Raichur, N. Chandrasekaran, and A. Mukherjee, "Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles," Sensors and Actuators B-Chemical, vol. 166, pp. 365-371, May 2012.
[13] K. Shrivas, S. Sahu, G. K. Patra, N. K. Jaiswal, and R. Shankar, "Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples," Analytical Methods, vol. 8, no. 9, pp. 2088-2096, 2016.
[14] C. C. Huang and H. T. Chang, "Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles," Chemical Communications, no. 12, pp. 1215-1217, 2007.
[15] M. Annadhasan, T. Muthukumarasamyvel, V. R. S. Babu, and N. Rajendiran, "Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium," Acs Sustainable Chemistry & Engineering, vol. 2, no. 4, pp. 887-896, Apr 2014.
[16] M. Rex, F. E. Hernandez, and A. D. Campiglia, "Pushing the limits of mercury sensors with gold nanorods," Analytical Chemistry, vol. 78, no. 2, pp. 445-451, Jan 2006.
[17] F. M. Li et al., "Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods," Sensors and Actuators B-Chemical, vol. 155, no. 2, pp. 817-822, Jul 2011.
[18] J. W. Xin, F. Q. Zhang, Y. X. Gao, Y. Y. Feng, S. G. Chen, and A. G. Wu, "A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Ag-core-Au-shell nanoparticles at room temperature," Talanta, vol. 101, pp. 122-127, Nov 2012.
[19] N. Y. Chen et al., "High-Performance Colorimetric Detection of Hg2+ Based on Triangular Silver Nanoprisms," Acs Sensors, vol. 1, no. 5, pp. 521-527, May 2016.
[20] G. H. Wu et al., "A novel AgNPs-based colorimetric sensor for rapid detection of Cu2+ or Mn2+ via pH control," Rsc Advances, vol. 5, no. 26, pp. 20595-20602, 2015.
[21] Y. Zhou et al., "Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe," Talanta, vol. 97, pp. 331-335, Aug 2012.
[22] S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," Journal of Physical Chemistry B, vol. 104, no. 26, pp. 6152-6163, Jul 2000.
[23] E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, "The golden age: gold nanoparticles for biomedicine," Chemical Society Reviews, vol. 41, no. 7, pp. 2740-2779, 2012.
[24] V. V. Kumar and S. P. Anthony, "Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: Tuning sensitivity and selectivity using co-stabilizing agents," Sensors and Actuators B-Chemical, vol. 191, pp. 31-36, Feb 2014.
[25] J. Zhou et al., "Carbon dots doped with heteroatoms for fluorescent bioimaging: a review," Microchimica Acta, vol. 184, no. 2, pp. 343-368, Feb 2017.
[26] P. L. Zuo, X. H. Lu, Z. G. Sun, Y. H. Guo, and H. He, "A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots," Microchimica Acta, vol. 183, no. 2, pp. 519-542, Feb 2016.
[27] D. Lim, W. G. Byun, J. Y. Koo, H. Park, and S. B. Park, "Discovery of a Small-Molecule Inhibitor of Protein-MicroRNA Interaction Using Binding Assay with a Site-Specifically Labeled Lin28," Journal of the American Chemical Society, vol. 138, no. 41, pp. 13630-13638, Oct 2016.
[28] S. Lin et al., "Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe," Chemical Science, vol. 6, no. 7, pp. 4284-4290, 2015.
[29] M. D. Wang et al., "Conjugating a groove-binding motif to an Ir(III) complex for the enhancement of G-quadruplex probe behavior," Chemical Science, vol. 7, no. 4, pp. 2516-2523, 2016.
[30] C. Yang et al., "Discovery of a VHL and HIF1 alpha interaction inhibitor with in vivo angiogenic activity via structurebased virtual screening," Chemical Communications, vol. 52, no. 87, pp. 12837-12840, 2016.
[31] C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nature Materials, vol. 4, no. 11, pp. 826-831, Nov 2005.
[32] T. Jin, A. Sasaki, M. Kinjo, and J. Miyazaki, "A quantum dot-based ratiometric pH sensor," Chemical Communications, vol. 46, no. 14, pp. 2408-2410, 2010.
[33] D. Wang, L. Zhu, C. McCleese, C. Burda, J. F. Chen, and L. M. Dai, "Fluorescent carbon dots from milk by microwave cooking," Rsc Advances, vol. 6, no. 47, pp. 41516-41521, 2016.
[34] S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, "Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents," Chemical Communications, vol. 48, no. 70, pp. 8835-8837, 2012.
[35] S. Y. Liu, N. Zhao, Z. Cheng, and H. G. Liu, "Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase," Nanoscale, vol. 7, no. 15, pp. 6836-6842, 2015.
[36] C. Q. Ding, A. W. Zhu, and Y. Tian, "Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging," Accounts of Chemical Research, vol. 47, no. 1, pp. 20-30, Jan 2014.
[37] J. Wang, Y. H. Ng, Y. F. Lim, and G. W. Ho, "Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H-2 production," Rsc Advances, vol. 4, no. 83, pp. 44117-44123, 2014.
[38] Z. Z. Cheng et al., "Carbon dots decorated vertical SnS2 nanosheets for efficient photocatalytic oxygen evolution," Applied Physics Letters, vol. 109, no. 5, Aug 2016, Art. no. 053905.
[39] S. J. Zhu et al., "Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging," Angewandte Chemie-International Edition, vol. 52, no. 14, pp. 3953-3957, 2013.
[40] Z. Wang et al., "Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions," Sensors and Actuators B-Chemical, vol. 241, pp. 1324-1330, Mar 2017.
[41] X. Y. Zhai et al., "Highly luminescent carbon nanodots by microwave-assisted pyrolysis," Chemical Communications, vol. 48, no. 64, pp. 7955-7957, 2012.
[42] H. Z. Zheng, Q. L. Wang, Y. J. Long, H. J. Zhang, X. X. Huang, and R. Zhu, "Enhancing the luminescence of carbon dots with a reduction pathway," Chemical Communications, vol. 47, no. 38, pp. 10650-10652, 2011.
[43] Q. L. Zhao, Z. L. Zhang, B. H. Huang, J. Peng, M. Zhang, and D. W. Pang, "Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite," Chemical Communications, no. 41, pp. 5116-5118, 2008.
[44] P. C. Hsu, Z. Y. Shih, C. H. Lee, and H. T. Chang, "Synthesis and analytical applications of photoluminescent carbon nanodots," Green Chemistry, vol. 14, no. 4, pp. 917-920, 2012.
[45] H. T. Li, Z. H. Kang, Y. Liu, and S. T. Lee, "Carbon nanodots: synthesis, properties and applications," Journal of Materials Chemistry, vol. 22, no. 46, pp. 24230-24253, Dec 2012.
[46] Trace elements in human nutrition and health. Geneva: World Health Organization, 1996, p. xviii+343 pp.
[47] Y. B. Xu, Y. J. Dong, X. Jiang, and N. N. Zhu, "Colorimetric Detection of Trivalent Chromium in Aqueous Solution Using Tartrate-Capped Silver Nanoparticles as Probe," Journal of Nanoscience and Nanotechnology, vol. 13, no. 10, pp. 6820-6825, Oct 2013.
[48] J. Ju and W. Chen, "Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media," Biosensors & Bioelectronics, vol. 58, pp. 219-225, Aug 2014.
[49] S. H. Li, Y. C. Li, J. Cao, J. Zhu, L. Z. Fan, and X. H. Li, "Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+," Analytical Chemistry, vol. 86, no. 20, pp. 10201-10207, Oct 2014.
[50] Y. P. Hu, J. Yang, J. W. Tian, L. Jia, and J. S. Yu, "Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence," Carbon, vol. 77, pp. 775-782, Oct 2014.
[51] P. Ossowicz, E. Janus, G. Schroeder, and Z. Rozwadowski, "Spectroscopic Studies of Amino Acid Ionic Liquid-Supported Schiff Bases," Molecules, vol. 18, no. 5, pp. 4986-5004, May 2013.
[52] H. J. Cheng, C. L. Kao, Y. F. Chen, P. C. Huang, C. Y. Hsu, and C. H. Kuei, "Amino acid derivatized carbon dots with tunable selectivity as logic gates for fluorescent sensing of metal cations," Microchimica Acta, vol. 184, no. 9, pp. 3179-3187, Sep 2017.
[53] S. S. Wee, Y. H. Ng, and S. M. Ng, "Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions," Talanta, vol. 116, pp. 71-76, Nov 2013.
[54] J. A. Lemire, J. J. Harrison, and R. J. Turner, "Antimicrobial activity of metals: mechanisms, molecular targets and applications," Nature Reviews Microbiology, vol. 11, no. 6, pp. 371-384, Jun 2013.
[55] R. Satapathy, Y. H. Wu, and H. C. Lin, "Novel Thieno-imidazole Based Probe for Colorimetric Detection of Hg2+ and Fluorescence Turn-on Response of Zn2+," Organic Letters, vol. 14, no. 10, pp. 2564-2567, May 2012.
[56] K. Y. Kim, S. H. Jung, J. H. Lee, S. S. Lee, and J. H. Jung, "An imidazole-appended p-phenylene-Cu(II) ensemble as a chemoprobe for histidine in biological samples," Chemical Communications, vol. 50, no. 96, pp. 15243-15246, 2014.
[57] L. X. Mu, W. S. Shi, G. W. She, J. C. Chang, and S. T. Lee, "Fluorescent Logic Gates Chemically Attached to Silicon Nanowires," Angewandte Chemie-International Edition, vol. 48, no. 19, pp. 3469-3472, 2009.

Appendix reference

1. Jie Xia, Yu-Ting Zhuang, Yong-Liang Yu and Jian-Hua Wang (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta, 184: 1109–1116. DOI: 10.1007/s00604-017-2104-8.
2. Wenjie Tang, Yan Wang, Panpan Wang, Junwei Di, Jianping Yang and Ying Wu (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta, 183: 2571–2578. DOI: 10.1007/s00604-016-1898-0.
3. Melissa May Fung Chang, Irine Runnie Ginjom, Maria Ngu-Schwemlein and Sing Muk Ng (2016) Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Microchim Acta, 183:1899–1907. DOI: 10.1007/s00604-016-1819-2.
4. Fanyong Yan, Depeng Kong, Yunmei Luo, Qianghua Ye, Juanjuan He, Xingfei Guo and Li Chen (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta, 183: 1611–1618. DOI: 10.1007/s00604-016-1788-5.
5. Fengxiang Wang, Qingli Hao, Yuehua Zhang, Yujuan Xu and Wu Lei (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta, 183: 273–279. DOI: 10.1007/s00604-015-1650-1.
6. Linbo Li, Lin Li, Chao Wang, Kangyu Liu, Ruohua Zhu, Hong Qiang and Yuqing Lin (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta, 182: 763–770. DOI: 10.1007/s00604-014-1383-6.
7. Hanbing Rao, Wei Liu, Zhiwei Lu, Yanying Wang, Hongwei Ge, Ping Zou, Xianxiang Wang, Hua He, Xianying Zeng and Yongjia Wang (2016) Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim Acta, 183: 581–588. DOI: 10.1007/s00604-015-1682-6.
8. Shan Huang, Hangna Qiu, Fawei Zhu, Shuangyan Lu and Qi Xiao (2015) Graphene quantum dots as onoffon fluorescent probes for chromium(VI) and ascorbic acid. Microchim Acta, 182: 1723–1731. DOI: 10.1007/s00604-015-1508-6.
9. Ying Guo, Lianli Yang, Wuwu Li, Xiaofang Wang, Yonghui Shang and Baoxin Li (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a "turn-on" fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta, 183: 1409–1416. DOI: 10.1007/s00604-016-1779-6.
10. Yanping Lin, Bixia Yao, Tingting Huang, Shichao Zhang, Xiaotong Cao and Wen Weng (2016) Selective determination of free dissolved chlorine using nitrogen-doped carbon dots as a fluorescent probe. Microchim Acta, 183: 2221–2227. DOI: 10.1007/s00604-016-1855-y.
11. Eliana Filipa Carrinho Simões, João M. M. Leitão and Joaquim Carlos Gomes Esteves da Silva (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta, 183: 1769–1777. DOI: 10.1007/s00604-016-1807-6.
12. Runxia Wang, Xiufang Wang and Yimin Sun (2017) Aminophenol-based carbon dots with dual wavelength fluorescence emission for determination of heparin. Microchim Acta, 184: 187–193. DOI: 10.1007/s00604-016-2009-y.
13. Bin Wang, Yanfen Chen, Yuanya Wu, Bo Weng, Yingshuai Liu and Chang Ming Li (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta, 183: 2491–2500. DOI: 10.1007/s00604-016-1885-5.
14. Fei Qu, Zhe Sun, Dongya Liu, Xianen Zhao and Jinmao You (2016) Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim Acta, 183: 2547–2553. DOI: 10.1007/s00604-016-1901-9.
15. Gaber Hashem Gaber Ahmed, Rosana Badía Laíño, Josefa Angela García Calzón and Marta Elena Díaz García (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta, 182: 51–59. DOI: 10.1007/s00604-014-1302-x.
16. Tongfan Hao, XiaoWei, Yijing Nie, Yeqing Xu, Yongsheng Yan and Zhiping Zhou (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta, 183: 2197–2203. DOI: 10.1007/s00604-016-1851-2.
17. Pengli Zuo, Junfa Gao, Jun Peng, Jianha Liu, Mingming Zhao, Jiahong Zhao, Pengjian Zuo and Hua He (2016) A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Microchim Acta, 183: 329–336. DOI: 10.1007/s00604-015-1630-2.
18. Yashan Wang, Tiancong Ma, Shuyue Ma, Yongjun Liu, Yaping Tian, Ruinan Wang, Yanbin Jiang, Dongjun Hou and Jianlong Wang (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta, 184: 203–210. DOI: 10.1007/s00604-016-2011-4.
19. Hong Ma, Xiaoyu Liu, Xudong Wang, Xinran Li, Chengduan Yang, Anam Iqbal, Weisheng Liu, Jiping Li and Wenwu Qin (2017) Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Microchim Acta, 184: 177–185. DOI: 10.1007/s00604-016-2004-3.
20. K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B, 161: 880–885.
21. H. Tan, B. Liu, Y. Chen (2013) Effects of the electrostatic repulsion between nanoparticles on colorimetric sensing: an investigation of determination of Hg2+ with silver nanoparticles. Plasmonics, 8: 705–713.
22. L.P. Wu, H.W. Zhao, Z.H. Qin, X.Y. Zhao, W.D. Pu (2012) Highly selective Hg(II) ion detection based on linear blue-shift of the maximum absorption wavelength of silver nanoparticles. Journal of Analytical Methods in Chemistry, p. 856947.
23. S. Gao, X. Jia, Y. Chen (2013) Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection, 15: 1385–1393.
24. C.-Y. Lin, C.-J. Yu, Y.-H. Lin, W.-L. Tseng (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Analytical Chemistry, 82: 6830–6837.
25. N. Ding, H. Zhao, W. Peng, Y. He, Y. Zhou, L. Yuan, Y. Zhang (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids and Surfaces A, 395: 161–167.
26. C.-C. Huanga, H.-T. Chang (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chemical Communications, 1215–1217.
27. Z. Brzozka, R.E. Gyurcsányi, J.-H. Lee, R. Moos, R. Narayanaswamy, D. Papkovsky, G. Rivas, Y. Shimizu, M. Tokeshi, U. Weimar (2011) Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sensors and Actuators B: Chemical, 155: 817-822.
28. Junwei Xin, Fuqiang Zhang, Yuexia Gao, Yanyan Feng, Shougang Chen, Aiguo Wu, (2012) A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Ag–Au nanoparticles at room temperature, Talanta, 101: 122-127, http://dx.doi.org/10.1016/j.talanta.2012.09.009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw