參考文獻 |
[1] C. H. Bennett and P. W. Shor, Quantum information theory, IEEE Transactions on information theory, Vol.44, No.6, pp.2724-2742, 1998.
[2] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information , Cambridge University Press, Cambridge, U.K., 2000.
[3] W. Warren, H. Rabitz and M. Dahleh, Coherent control of quantum dynamics: The dream is alive, Science, Vol.259, No.5101, pp.1581-
1589, 1993.
[4] M. Shapiro and P. Brumer, Principle of the quantum control of molecular process, John Wiley & Sons Publ. Hoboken, New Jersey, 2003.
[5] T. Brixner and G. Gerber, Quantum control of gas-phase and liquid-phase femtochemistry, ChemPhysChem, Vol.4, No.5, pp.418-438, 2003.
[6] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Whither the future of controlling quantum phenomena?, Science, Vol.288, No.5467, pp.824-828, 2000.
[7] R. J. Levis, G. M. Menkir and H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses, Science, Vol.292, No.5517 ,pp.709-713, 2001.
[8] R. P. Feynman, Quantum mechanical computers, Foundations of physics, Vol.16, No.6, pp.507-531, 1986.
[9] P. W. Shor, Algorithms for quantum computation: Discrete logarithms andfactoring, in proceedings of the symposium on the foundations of computer science, Los Alamitos, California, IEEE Computer society press, New York, pp.124-134, 1994.
[10] L. K. Grover, A fast quantum mechanics algorithm for database search, in proceedings of the twenty-eighth annual symposium on the theory of computing, Philadelphia, Pennsylvania, ACM Press, New York, pp.212-218, 1996.
[11] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Physical review letters, Vol.79, No.2, pp.325-328, 1997.
[12] T. Sleator and H. Weinfurter, Realizable universal quantum logic gates, Physical review letters, Vol.74, No.20, pp.4087-4090, 1995.
[13] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Quantum rabi oscillation: A direct test of field quantization in a cavity, Physical review letters, Vol.76, No.11,pp.1800- 1803, 1996.
[14] J. I. Girac and P. Zoller, Quantum computations with cold trapped ions, Physical review letters, Vol.74, No.20, pp.4091-4094,1995.
[15] F. Schmidt-Kaler et al., Realization of the cirac–zoller controlled-
NOT quantum gate, Nature, Vol.422, No.6930, pp.408-411, 2003.
[16] N. A. Gershenfeld and I. L. Chuang, Spin-resonanse quantum computation, Science, Vol.275, No.5298, pp.350-356, 1997.
[17] J. A. Jones and M. Mosca, Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer, Journal of chemical physics, Vol.109, No.5, pp.1648-1653, 1998.
[18] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel and S. J. Glaser, Approaching five-bit NMR quantum computing, Physical review A, Vol.62, No.1, 012310, 2000.
[19] D. Loss and D.P. DiVincenzo, Quantum computation with quantum dots, Physical Review A, Vol.57, No.1, pp.120-126, 1998.
[20] L. M. K. Vandersypen, M. Steffen, G. Breyta, et al., Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, Vol.414, No.6866, pp.883-887, 2001.
[21] A. O. Niskanen, K. Harrabi, F. Yoshihara, et al., Quantum coherent tunable coupling of superconducting qubits, Science, Vol.316, No.5825, pp.723-726, 2007.
[22] L. Viola, S. Lloyd and E. Knill, Universal control of decoupled quantum systems, Physical review letters, Vol.83, No.23, pp.4888-4891, 1999.
[23] R. S. Judson and H. Rabitz, Teaching lasers to control molecules, Physical review letters, Vol.68, No.10, pp.1500-1503, 1992.
[24] M. Q. Phan and H. Rabitz, Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps, Chemical physics, Vol.217, No.2-3, pp.389-400, 1997.
[25] P. Gross, D. Neuhauser and H. Rabitz, Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision, Journal of chemical physics, Vol.98, No.6, pp.4557-4566, 1993.
[26] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of chemical reactions by feedback-
optimized phase-shaped femtosecond laser pulses, Science, Vol.282, No.5390, pp.919-922, 1998.
[27] J. W. Clark, C. K. Ong, T. J. Tarn and G. M. Huang, Quantum nondemolition filters, Mathematical systems theory, Vol.18, No.1, pp.33-55, 1985.
[28] H. M. Wiseman and G. J. Milburn, Quantum theory of optical feedback via homodyne detection, Physical review letters, Vol.70, No.5, pp.548-551, 1993.
[29] C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, et al., Feedback quantum control of molecular electronic population transfer, Chemical physics letters, Vol.280, No.1-2, pp.151-158, 1997.
[30] A. C. Doherty and K. Jacobs, Feedback control of quantum systems using continuous state estimation, Physical Review A, Vol.60, No.4, pp.2700-2711, 1999.
[31] S. Lloyd, Coherent quantum feedback, Physical Review A, Vol.62, No.2, 022108, 2000.
[32] H. M. Wiseman, S. Mancini and J. Wang, Bayesian feedback versus Markovian feedback in a two-level atom, Physical Review A, Vol.66, No.1, 013807, 2002.
[33] J. M. Geremia, J. K. Stockton and H. Mabuchi, Real-time quantum feedback control of atomic spin-squeezing, Science, Vol.304, No.5668, pp.270-273, 2004.
[34] D. A. Steck, K. Jacobs, H. Mabuchi, T. Bhattacharya and S. Habib, Quantum feedback control of atomic motion in an optical cavity, Physical review letters, Vol.92, No.22, 223004, 2004.
[35] M. Yanagisawa, Quantum feedback control for deterministic entangled photon generation, Physical review letters, Vol.97, No.19, 190201, 2006.
[36] A. P. Peirce, M. A. Dahleh and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications, Physical Review A, Vol.37, No.12, pp.4950 – 4964, 1988.
[37] J. M. Geremia and H. Rabitz, Optimal identification of Hamiltonian information by closed-loop laser control of quantum systems, Physical review letters, Vol. 89, No.26, 263902, 2002.
[38] A. C. Doherty, J. Doyle, H. Mabuchi, et al., Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia, pp.949-954 , 2000.
[39] H. Y. Fan, K. Yang,D. M. Boye, et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, Vol.304, No.5670, pp.567-571, 2004.
[40] C. J. Bardeen, J. W. Che, K. R. Wilson, et al., Quantum control of NaI photodissociation reaction product states by ultrafast tailored light pulses, Journal of physical chemistry A, Vol.101, No.20, pp.3815-3822, 1997.
[41] C. J. Bardeen, J. W. Che, K. R. Wilson, et al., Quantum control of I2 in the gas phase and in condensed phase solid Kr matrix, Journal of chemical physics, Vol.106, No.20, pp.8486-8503, 1997.
[42] D. Meshulach and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature, Vol.396, No.6708, pp.239-242 , 1998.
[43] S. M. Hurley and A. W. Castleman Jr., Laser chemistry: Keeping reactions under quantum control , Science, Vol.292, No.5517, pp. 648-649 (2001).
[44] C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, Applying optimal control theory for elements of quantum computation in molecular systems, Chemical physics letters, Vol.343, No.5-6, pp.633-641, 2001.
[45] S. Suzukia, K. Mishimab and K. Yamashita, Ab initio study of optimal control of ammonia molecular vibrational wavepackets: Towards molecular quantum computing, Chemical physics letters, Vol.410, No.4-6, pp.358-364, 2005.
[46] M. Tsubouchi and T. Momose, Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computation: Optimization of pulse shape by a genetic algorithm, Physical Review A, Vol.77, No.5, 052326, 2008.
[47] K. Shioya, K. Mishima and K. Yamashita, Quantum computing using molecular vibrational and rotational modes, Molecular Physics Vol.105, No.9, pp.1283-1295, 2007.
[48] 詹政憲, 量子控制系統的可控制性研究, 中原大學碩士論文, 中壢, (1992).
[49] 陳弘暻, 量子系統的可控制性研究(二), 中原大學碩士論文, 中壢, (1993).
[50] 謝道明, 量子系統控制的理論研究, 中原大學碩士論文, 中壢, (2000).
[51] 周建良, 量子系統控制理論之研究, 成功大學碩士論文, 台南, (2003).
[52] C. J. Cheng, C. C. Hwang, T. L. Liao and G. L. Chou, Optimal control of quantum systems: a projection approach, Journal of physics A: mathematical and general, Vol.38, No.4, pp.929-942, 2005.
[53] U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laserfields. A new concept and experimental results, Journal of chemical physics, Vol.92, No.9, pp.5363-5376, 1990.
[54] G. W. Coulston and K. Bergmann, Population transfer by stimulated Raman scattering with delayed pulses: Analytical results for multilevel systems, Journal of chemical of physics, Vol.96, No.5, pp.3467-3475 , 1992.
[55] B. Glushko and B. Kryzhanovsky, Radiative and collisional damping effects on efficient population transfer in a three-level system driven by two delayed laser pulses, Physical review A, Vol.46, No.5, pp.2823-2830, 1992.
[56] M. Morillo, and R. I. Cukier, Control of proton-transfer reactions with external fields, Journal of chemical physics, Vol.98, No.6, pp.4548-4557, 1993.
[57] D. Y. Petrina, Mathematical foundations of quantum statistical mechanics, Kluwer Academic Pub., 1995.
[58] R. Shankar, Principles of quantum mechanics, Plenum Press, New York, 2nd ed., 1994.
[59] K. Blum, Density matrix theory and applications, physics of atoms and molecules, Springer, 2nd ed., 1996.
[60] J. von Neumann, The mathematical foundations of quantum mechanics, Princeton University Press, 1996.
[61] Y. Ohtsuki and Y. Fujimura, Bath-induced vibronic coherence transfer effects on femtosecond time-resolved resonant light scattering spectra from molecules, Journal of chemical physics, Vol.91, No.7, pp.3903-3915, 1989.
[62] J. Seke, A. V. Soldatov and N. N. Bogolubov Jr., Novel technique for quantum-mechanical eigenstate and eigenvalue calculatiions based on Seke's self-consistent projection-operator method, Modern physics letters. B, condensed matter physics, statistical physics, applied physics, Vol.11, No.6, pp.245-258, 1997.
[63] C. Uchiyama and F. Shibata, Unified projection operator formalism in nonequilibrium statistical mechanics, Physical review E, Vol.60, No.3, pp.2636, 1999.
[64] 叢爽, 量子力學系統控制導論, 科學出版社, 北京, (2006).
[65] S. G. Schirmer, Theory of control of quantum systems, UMI, Ann Arbor, MI, 2000.
[66] W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator, Journal of chemical physics, Vol.109, No.2, pp. 385-391, 1998.
[67] P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical review, Vol.34, No.1, pp.57-64, 1929.
[68] M. E. Goggin and P. W. Milonni, Driven Morse oscillator: Classical chaos, quantum theory, and photodissociation, Physical review A, Vol. 37, No.3, pp.796-806, 1988.
[69] H. Lefebvre-Brion and R. W. Field, The spectra and dynamics of diatomic molecules, ELSEVIER, 2004.
[70] J. Zúñiga, A. Bastida and A. Requena, An analytical perturbation treatment of the rotating Morse oscillator, Journal of physics B-atomic molecular and optical physics, Vol.41, No.10, 105102, 2008.
[71] J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular theory of gases and liquids, Wiley, New York, 1954.
[72] S. G. Schirmer, H. Fu and A. I. Solomon, Complete controllability of quantum systems, Physical review A, Vol.63, No.6, 063410, 2001.
[73] S. G. Schirmer, H. Fu and A. I. Solomon, Complete controllability of finite-level quantum systems, Journal of physics A: mathematical and general, Vol.34, No.12, pp.1679-1690, 2001.
[74] A. G. Butkovskiy and Yu. I. Samoilenko, Control of quantum-
mechanical processes and systems, Kluwer Academic Pub., Dordrecht, Netherlands, 1990.
[75] A. E. Bryson, Jr and Yu Chi Ho, Applied optimal control: Optimization estimation and control, Hemisphere Pub., Washington, 1975.
[76] E. B. Lee and L. Markus, Foundations of optimal control theory, Wiley Pub., New York, 1967.
[77] A. P. Sage and C. C. White III, Optimum systems control, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.
[78] K. Sundermann and R. de Vivie-Riedle, Extensions to quantum optimal control algorithms and applications to special problems in state selective molecular dynamics, Journal of chemical physics, Vol.110, No.4, pp.1896-1904, 1999.
[79] G. Leitmann, The calculus of variations and optimal control, Plenum Press Pub., New York, 1981.
[80] S. Shi and H. Rabitz, Optimal control of bond selectivity in unimolecular reactions, Computer physics communications, Vol.63, No.1-3, pp.71-83, 1991.
[81] R. Kosloff, A.D. Hammerich and D. Tannor, Excitation without demolition: Radiative excitation of ground-surface vibration by impulsive stimulated Raman scattering with damage control, Physical review letters, Vol.69, No.15, pp.2172-2175, 1992.
[82] S. G. Schirmer, M. D. Girardeau, J. V. Leahy, Efficient algorithm for optimal control of mixed-state quantum systems, Physical review A, Vol.61, No.1, 012101, 2000.
[83] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Physics letters A, Vol.146, No.6, pp.319-323, 1990.
[84] S. A. Rice and M. Zhao, Optical control of molecular dynamics, John Wiley & Sons Publ., New York, 2000.
[85] C. Uchiyama and F. Shibata, A systematic projection operator formalism in nonequilibrium statistical mechanics, Journal of the physical society of Japan, Vol.65, No.4, pp.887-890, 1996.
[86] H. P. Breuer and B. Kappler, The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence, Annals of physics, Vol.291, No.1, pp.36-70, 2001.
[87] J. Seke, A. V. Soldatov and N. N. Bogolubov Jr, The Seke self-consistent projection-operator approach for the calculation of quantum-mechanical eigenvalues and eigenstates, Physica A, Vol.246, No.1, pp.221-240, 1997.
[88] J. Seke, Self-consistent projection-operator method for describing the non-Markovian time-evolution of subsystems, Journal of physics A: mathematical and general, Vol.23, No.2, pp.L61, 1990.
[89] V. May and O. Kuhn, Charge and energy transfer dynamics in molecular systems, 2nd, Revised and Enlarged Edition, Wiley, 2004.
[90] J. Seke, A. V. Soldatov and N. N. Bogolubov Jr., Novel Technique for Quantum-Mechanical Eigenstate and Eigenvalue Calculatiions Based on Seke's Self-Consistent Projection-Operator Method, Mod. Phys. Lett. B 11(6), 245, (1997).
[91] O. Bayrak and I. Boztosun, Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method, Journal of physics A: mathematical and general, Vol.39, No.22, pp.6955–6963, 2006.
[92] H. Sekino and R. J. Bartlett, Molecular hyperpolarizabilities, J. Chem. Phys. 98, 3022 (1993).
[93] J. P. Palao and R. Kosloff, Optimal control theory for unitary transformations, Phys. Rev. A 68, 062308(2003).
|