進階搜尋


 
系統識別號 U0026-0812200915395040
論文名稱(中文) 年齡和跨越前跟隨腳至障礙物距離對於跨越障礙物時動作控制的影響
論文名稱(英文) Effect of Age and Toe-distance on the Control of Obstacle Crossing
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 97
學期 2
出版年 98
研究生(中文) 王惠中
研究生(英文) Hui-Chung Wang
學號 T6695104
學位類別 碩士
語文別 中文
論文頁數 224頁
口試委員 口試委員-呂東武
口試委員-蘇芳慶
指導教授-林桑伊
中文關鍵字 感覺運動功能  平衡控制  跨越障礙物  老年人 
英文關鍵字 obstacle crossing  elderly  balance control  sensorimotor functions 
學科別分類
中文摘要 背景:跨越障礙物是一項很重要的能力,先前的文獻只有提到年齡在跨越障礙物表現時的差異,並未有研究深入探討老化造成感覺運動機能衰退對於跨越障礙物的影響;另外,腳踏位置離障礙物的遠近對於跨越障礙物時平衡能力的維持可能有不同的影響,因此希望藉由此研究能瞭解年齡在不同遠近腳踏位置跨越不同高度障礙物時平衡控制的影響,以及因老化造成感覺及運動功能的衰退對於跨越障礙物表現的影響。方法:共19位老年女性及13位年輕女性參加本實驗,受試者利用自選速度行走於一十公尺長的走道並分別跨越平面以及10%腿長高度的障礙物,並且藉由在無障礙物行走時的步長作為障礙物放置的依據以引發不同遠近的腳踏位置。身體運動學資料是利用受試者身上反光球的位置以電腦程式計算出步態及身體質量中心等參數,並且進行多變量重複計量統計分析(年齡×跨越前跟隨腳至障礙物距離×障礙物高度),皮爾森相關係數則檢定感覺運動功能參數包括下肢肌力、踝及膝關節位置感覺以及足底觸壓覺和跨越時身體質量中心的關係。結果:步態參數並無發現三因子間的交互作用,而身體質量中心在垂直方向的速度發現有三因子交互作用於前導腳之單腳站立期之最大速度發生時間,事後分析發現只有老年人在跨越平面障礙物時,在腳踏位置較近的時間點較晚發生,而年輕人並無顯著差異。皮爾森相關係數發現,老年女性在跨越腳踏位置較近以及較高障礙物的情況下,膝伸直肌肌力和身體質量中心於垂直方向位移參數呈顯著負相關,而關節位置感覺以及足底觸壓覺則和速度參數有顯著相關存在。結論:跨越時的平衡控制能力確實會受到年齡、腳踏位置及障礙物高度的影響。在年齡方面的主要影響是跨越障礙物時平衡控制的時間點,而其他兩因素則分別影響了不同跨越時期的平衡控制:腳踏位置主要是影響跨越之前的平衡控制,而障礙物高度主要影響跨越時的平衡控制。臨床上需建議老年人應加強下肢肌力及體感覺功能,以減少被障礙物絆倒的風險。
英文摘要 Introduction: Tripping over obstacles is a common cause of falls among the elderly. It has been reported that age may have an impact on obstacle crossing. However, it is not clear how age-related declines in sensorimotor functions correlates to obstacle crossing. In addition, the foot placement in relation to the obstacle may influence the success of obstacle crossing. The purpose of this study was to investigate how the foot placement affected gait and the control of the center of mass in obstacle crossing, and the contribution of sensorimotor functions in healthy older females. Method: Nineteen healthy older females and thirteen young females participated. Subjects were instructed to walk at their self-selected speeds to cross a flat and high (10% leg length) obstacle with either long or short toe-obstacle distance. The kinematics data included gait and center of mass (COM), were recorded using a 5-camera Vicon motion analysis system. Sensorimotor functions included isometric leg muscle strengths, ankle and knee joint position sense and plantar cutaneous sensation were also used to be analyzed. A three-way (age × toe-obstacle distance × obstacle height) repeated measures multivariate ANOVAs was conducted on COM vertical displacement and velocity variables to determine the correlation between sensorimotor functions and COM variables when crossing high obstacle with short toe-obstacle distance, Pearson correlation analysis was conducted. Results: There was a three-way interaction on the time of the COM vertical peak velocity in the single support time of leading stride; post-hoc analysis showed that in flat obstacle condition, the time of COM peak velocity in older females was significantly later in short toe-obstacle distance condition than the long one, though no significant findings was found in young females. Pearson correlation coefficient showed that knee extensor negatively correlated with COM vertical displacement parameters, and joint position sense as well as plantar cutaneous sensation correlated with COM vertical velocity parameters. Conclusions: The control of balance in crossing obstacles would be affected by age, foot placement and obstacle height. While age and obstacle height affected the timing of COM control during crossing, foot placement affected the control of pre-crossing phase. Clinically, leg muscle strengthening and improving somatosensation should be advised for the elderly.
論文目次 中文摘要 ------------------------------------------------------------------------------ 1
英文摘要 ------------------------------------------------------------------------------ 3
誌謝 ------------------------------------------------------------------------------------ 5
表目錄 ------------------------------------------------------------------------------- 10
圖目錄 ------------------------------------------------------------------------------- 14
第一章 理論及文獻回顧 ------------------------------------------------ 18
第一節 行走的動作特徵 ------------------------------------------------------- 18
第二節 行走之動作控制系統 ------------------------------------------------- 26
第三節 跨越障礙物之動作特徵分析 ---------------------------------------- 39
第四節 感覺系統對跨越障礙物的影響 ------------------------------------- 50
第五節 動作系統對跨越障礙物的影響 ------------------------------------- 55
第六節 年齡對行走控制的影響 ---------------------------------------------- 57
第七節 老年人跨越障礙物的動作特徵 ------------------------------------- 64
第二章 研究背景 ----------------------------------------------------------69
第一節 研究目的 ---------------------------------------------------------------- 69
第二節 研究假設 -----------------------------------------------------------------70
第三章 研究方法 --------------------------------------------------------- 71
第一節 研究設計 ---------------------------------------------------------------- 71
第二節 受試者 ------------------------------------------------------------------- 72
第三節 前置實驗 ---------------------------------------------------------------- 74
第四節 主要實驗 ---------------------------------------------------------------- 77
第五節 資料處理與重要參數定義 ------------------------------------------- 93
第六節 統計分析 --------------------------------------------------------------- 109
第四章 實驗結果 -------------------------------------------------------- 110
第一節 受試者基本資料 ------------------------------------------------------ 110
第二節 理學檢查測量結果 --------------------------------------------------- 111
第三節 跨越障礙物之步態參數結果 --------------------------------------- 113
第四節 跨越障礙物之身體質量中心參數結果 --------------------------- 142
第五節 相關性分析:感覺運動功能與身體質量中心參數 ------------ 184
第五章 討論 -----------------------------------------193
第一節 年齡及跨越前跟隨腳至障礙物距離對於跨越障礙物時步態參數的影響 ------------------------------------------------------------------ 194
第二節 年齡及跨越前跟隨腳至障礙物距離對身體質量中心參數的影響--------------------------------------------------------------------------- 198
第三節 感覺運動功能和身體質量中心參數之相關性 ------------------ 204
第四節 實驗限制 --------------------------------------------------------------- 206
第五節 臨床應用 -------------------------------------------------------------- 208
第六章 結論 -------------------------------------------------------------209
第七章 參考文獻 --------------------------------------------------------210
附錄 ----------------------------------------------------------------------220
自述 ----------------------------------------------------------------------223
參考文獻 1. Shumway-Cook A, Woollacott MH. Motor Control: theory and practical applications. L ippinott Williams & Wilkins, Philedelphia, USA. In. Ch6: Control of posture and balance, Ch8: Aging and postural control, 11: Control of normal mobility. P119-142, P239-268, 1995.
2. Marsoro EJ. Challenges of biological aging, 1st ed. Springer Publishing Company, Inc, USA. Ch6: p.85-170, 1999.
3. Kandel ER, Schwarts JH, Jessell TM. Principle of neural science. McGraw Hill Inc., New York, USA. Ch22,23. P430-470, 2000.
4. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis, 4th ed. Human Kinematics, Champaign, USA. P143-147, 2005.
5. Rothwell J. Control of human voluntary movement. Chpman & Hall, London. Ch4: Proprioceptors in muscles, joints, and skin. P86-117, 1994.
6. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction on balance. Physical therapy. 66: 1548-50, 1986.
7. 胡名霞,林慧芬。成年人站立平衡之研究-感覺整合與年齡效應之分析。中華民國物理治療雜誌。19-66-77, 1994。
8. 胡名霞。動作控制與動作學習修訂版。金名圖書,台北市。第六章:系統理論與姿勢控制,p.65-79,2001。
9. Perry J. Gait analysis: normal and pathological function. McGraw-Hill Inc., New York, USA. P1-149, 1992.
10. Jessica R, Gamble JG. Human walking, 2nd ed. Williams & Wilkins, USA. Ch1-2: p.1-44, 1994.
11. Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB. Stepping over obstacles: gait patterns of healthy young and old adults. Journal of Gerontology: medical science. 46(6): M196-203, 1991.
12. Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task. Physical Therapy. 72: 45-56, 1992.
13. Chou LS, Draganich LF. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. J Biomech. 31: 685-691, 1998.
14. Chou LS, Kaufman KR, Brey RH, Draganich LF. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait & Posture. 13: 17-26, 2001.
15. Hahn ME, Chou LS. Age-related reduction in saggital plane center of mass motion during obstacle crossing. Journal of Biomechanics. 37: 837-844, 2004.
16. Pai YC, Patton J. Center of mass velocity-position predictions for balance control. Journal of Biomechanics. 30(4): 347-354, 1997.
17. McFadyen BJ, Winter DA. Anticipatory locomotor adjustments during obstructed human walking. NeuroscienceResearch Communications. 9(1): 37-44, 1991.
18. Chou LS, Draganich LF. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. J Biomechanics. 30(4):331-337, 1997.
19. Chou LS, Draganich LF. Increasing obstacle height and decreasing toe-obstacle distance affect the joint moments of the stance limb differently when stepping over an obstacle. Gait and posture. 8: 186-204, 1998.
20. McFadyen BJ, Winter DA. Anticipatory locomotor adjustments during obstructed human walking. NeuroscienceResearch Communications. 9(1): 37-44, 1991.
21. Chou LS, Draganich LF. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. J Biomechanics. 30(4):331-337, 1997.
22. McFadyen BJ, Carnahan H. Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp Brain Res. 114:500-506, 1997.
23. Patla AE, Rietdyk S, Martin C, Prentice S. Locomotor patterns of the leading and the trailing limbs as solid and fragile obstacles are stepped over: some insights into the role of vision during locomotion. Journal of Motor Behavior. 28(1):35-47, 1996.
24. Patla AE, Prentice SD, Rietdyk S, Allard F, Martin C. What guides the selection of alternate foot placement during locomotion in humans. Experimental Brain Research. 128: 441-450, 1999.
25. Patla AE, Prentice SD, Robinson C, Neufeld J. Visual control of locomotion: strategies for changing direction and for going over obstacles. Journal of Experimental Psychology: human perception and performance. 17(3): 603-634, 1991.
26. Patla AE, Rietdyk S. Visual control of limb trajectory over obstacles during locomotion: effect of obstacle height and width. Gait posture. 1:45-60, 1993.
27. Patla AE, Vickers JN. Where and when do we look as we approach and step over an obstacle in the travel path? Neurophysiol. 8:3661-3665, 1997.
28. Patla AE, Greig M. Any way you look at it, successful negotiation needs visuaaly guided on-line foot placement regulation during the approach phase. Neuroscience letters. 397: 110-114, 2006.
29. Mohagheghi AA, Moraes R, Patla AE. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Exp Brain Res. 155:459-468, 2004.
30. Sorensen KL, Hollands, Patla AE. The effects of human ankle vibration on posture and balance during adaptive locomotion. Exp Brain Res. 143:24-34, 2002.
31. Nurse MA, Nigg BM. The effect of changes in foot sensation on plantar pressure and muscle activity. Clin Biomech. 16:719-27, 2001.
32. Menz HB, Lord SR, George RS, Fitzpatrick RC. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch Phys Med Rehabil. 85: 245-52, 2004.
33. Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M. Postural stability in diabetic polyneuropathy. Diabetes care. 18:638-645, 1995.
34. Meyer PF, Oddsson LIE, De Luca CJ. The role of plantar cutaneous sensation in unperturbed stance . Exp Brain Res. 156: 505-512, 2004.
35. Perry SD, McIlroy WE, Maki BE. The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Research.877: 401-406, 2000.
36. McFadyen BJ, Bouyer L, Bent LR, Inglis T. Visual-vestibular influences on locomotor adjustments for stepping over an obstacle. Exp Brain Res. 179: 235-243, 2007.
37. Bent LR, Inglis T, McFadyen BJ. Vestibular contributions across the execution of a voluntary forward step. Exp Brain Res. 143: 100-105, 2002.
38. Sparrow WA, Shinkfield AJ, Chow S, Begg RK. Characteristics of gait in stepping over obstacles. Human Movement Science. 15: 605-622, 1996.
39. Pijnappels M, Bobbert MF, van Dieen JH. Contribution of the support limb in control of angular momentum after tripping. J Biomech. 37: 1811-1818, 2004.
40. Pijnappels M, Bobbert MF, van Dieen JH. How early reactions in the support limb contribute to balance recovery after tripping. J Biomech. 38: 627-634, 2005.
41. Kenny RA. Physiology of aging: a synopsis, 2nd ed. Year book medical publishers, Inc, USA. CH4, 7: p.37-45, p.79-94, 1999.
42. Borger LL, Whitney SL. Redfern MS, Furman JM. The influence of dynamic visual environments on postural sway in the elderly. Journal of vestibular research. 9: 197-205, 1998.
43. Redfern MS, Jennings JR, Martin C, Furman JM. Attention influences sensory integration for postural control in older adults. Gait and posture. 14: 211-216, 2001.
44. Campbell AJ, Borrie MJ, Spears GF. Risk factors for falls in a community-based prospective study of people 70 years and older. Journal of Gerontology: medical science. 44(4): M112-117, 1989.
45. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. Journal of Biomechanics. 319(26): 1701-1707, 1988.
46. Berg WP, Alessio HM, Millis MM, Tong C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 26:261-268, 1997.
47. Blake AJ, Morgan MJ, Dallosso H, Ebrahim SBJ, Arie THD, Fentem PH, Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age and Ageing. 17: 365-372, 1988.
48. Overstall PW, Exton-Smith AN, Imms FJ, Johnson AL. Falls in the elderly related to postural imbalance. British Medical Journal. 30: 347-354, 1977.
49. Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc 41: 1226-1234, 1993.
50. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fractures in ambulatory elderly. JAMA 271: 128-133, 1994.
51. Lu TW, Chen HL, Chen SC. Comparisons of the lower limb kinematics beteen young and older adults when crossing obstacles of different heights. Gait and posture. 23: 471-479, 2006.
52. Pijnappels M, van der Burg JCE, Reeves ND, van Dieen JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 102: 585-592, 2008.
53. Hahn ME, Lee HJ, Chou LS. Increased muscular challenge in older adults during obstructed gait. Gait and posture. 22: 256-361, 2005.
54. Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB. Age effects on strategies used to avoid obstacles. Gait and posture. 2: 136-146, 1994.
55. Shultz AB. Mobility impairments in the elderly: challenges for biomechanics research. Journal of Biomechanics. 25: 519-28, 1992.
56. Winter DA. Human balance and posture control during standing and walking. Gait and posture. 3: 124-193, 1995.
57. Weerdesteyn V, Nienhuis B, Mulder T, Duysens J. Older women strongly prefer stride lengthening to shortening in avoiding obstacles. Exp Brain Res. 161:39-46, 2005a.
58. Lord SR, Clark RD, Webster IW. Physiological factors associated with falls in an elderly population. J Am Geriatr Soc. 39:1194-1200, 1991.
59. Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc. 42: 1110-1117, 1994.
60. Lord SR, Clark RD. Simple physiological and clinical tests for the accurate prediction of falling in older adults. Gerontology. 42: 199-203, 1996.
61. Portney LG, Watkins MP. Foundations of clinical research: applications to practice, 3rd ed. Pearson Education , Inc, USA. P.830-855.
62. Vicon Plug-in Gait User Manual, Oxford Metrics Ltd., Oxford UK, 2003.
63. 張紹勳,林秀娟。SPSS多變量統計分析。滄海書局,台北。第十章:信度分析, p. 433-439。2003。
64. Hislop HJ, Montgomery J. Muscle testing: techniques of manual examination, 7th ed. W.B. Saunders Company. Philadelphia, USA. Ch5: p179-252, 2002.
65. Rantanen T, Volpato S, Ferrucci L, Heikkinen E, Fried LP, Guralnik JM. Handgrip strength and cause-specific and total mortality in older disabled women: exploring the mechanism. J Am Geriatr Soc. 51: 636-641, 2003.
66. Schechtman O, Mann WC, Justiss ND. Grip strength in the frail elderly. Am J Phys Med Rehabil. 83:819-826, 2004.
67. Horvat M, Croce R, Roswal G. Intratester reliability of the Nicholas Manual Muscle Tester on individuals with intellectual disabilities by a tester having minimal experience. Arch Phys Med Rehabil. 75(7):808-11, 1994.
68. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Physical Therapy. 82(1): 69-82, 2002.
69. Brown TG. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B. 84:308-319, 1911.
70. Craik RL, Oatis CA. Gait analysis: theory and application. Mosby Inc., St. Louis, USA. P46-64, 1995.
71. Grillner S, Rossignol S. On the initiation of the swing phase of locomotion inchronic spinal cats. Brain Res. 146: 269-277, 1978.
72. Frossberg H, Grillner S, Rossignol S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85: 121-139, 1977.
73. Timiras PS. Physiological basis of aging and geriatrics, 4th ed. Informa Healthcare USA, Inc. Ch7: p89-107, 2007.
74. Hutton JT. Preventing falls: a defensive approach, 1st ed. Prometheus Books, USA. P.44, 2000.
75. Murray MP, Kory RC, Clarkson BH. Walking patterns in healthy old men. J Gerontol 24(2):169-78, 1969.
76. Patla AE. Understanding the roles of vision in the control of human locomotion. Gait and posture 5:54-69, 1997.
77. Bent LR, McFadyen BJ, Merkley VF, Kennedy PM, Inglis JT. Magnitude effects of galvanic vestibulr stimulation on the trajectory of human gait. Neuroscience Letters 279:157-160, 2000.
78. Lamoureux E, Sparrow WA, Murphy A, Newton RU. The effects of improved strength on obstacle negotiation in community-living older adults. Gait and posture 17:273-283, 2003.
79. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysol 75(3): 1126-38, 1996.
80. Widajewicz W, Kably B, Drew T.Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs. J Neurophysiol 72(5):2070-89, 1994.
81. McFadyen BJ, Lavoie S, Drew T. Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion. Exp Brain Res 125:502-510, 1999.
82. Wang TM, Chen HL, Lu TW. Effects of obstacle height on the control of the body center of mass motion during obstructed gait. Journal of the Chinese Institute of Engineers 30(3): 471-479, 2007.
83. Zehr EP, Stein RB. What functions do reflexes serve during human locomotion? Progress in Neurobiology 58: 185-205, 1999.
84. 馬大元。最新神經系統解剖學,合計圖書出版社,台北。第八章:p81-105, 1996。
85. Warren WH. Visual control of step length during running over irregular terrain. Journal of Experimental Psychology: Human Perception and Performance 12(3): 259-266, 1986.
86. Begg RK, Sparrow WA. Gait characteristics of young and older individuals negotiating a raised surface: implications for the prevention of falls. J Gernotol 55A(3):M147-154, 2000.
87. Kirtley C. Clinical gait analysis: theory and practice. Churchill Livingstone, US. Ch 9: p158-174, 2006.
88. McKenzie NC, Brown LA. Obstacle negotiation kinematics: age-dependent effects of postural threat. Gait and posture 19: 226-234, 2004.
89. Gauchard GC, Jeandel C, Tessier A, Perrin PP. Beneficial effect of proprioceptive physical activities on balance control in elderly human subjects. Neuroscience letters 273: 81-84, 1999.
90. Kernozek TW, LaMott EE. Comparisons of plantar pressure between the elderly and young adults. 3: 143-148, 1995.
91. Chen H, Ashton-Miller JA, Alexander NB, Schultz AB. Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol 46(6): M196-203, 1992.
92. Draganich LF, Kuo CE. The effects of walking speed on obstacle crossing in healthy young and healthy older adults. J Biomech 37:889-896, 2004.
93. McFayden BJ, Prince F. Avoidance and accommodation of surface height changes by healthy, community-dwelling, young, and elderly men. J Gerontol 57A:B166-174, 2002.
94. Lowrey CR, Watson A, Vallis LA. Age-related changes in avoidance strategies when negotiating single and multiple obstacles. Exp Brain Res 182:289-299, 2007.
95. Winter DA. Biomechanics and motor control of human movement. 2nd ed. John & Sons, Inc, Canada. p56~57, 1990.
96. Kovacs CR. Age-related changes in gait and obstacle avoidance capabilities in oler adults: a reiview. Journal of Applieed Gerontology 24:21-34, 2005.
97. Austin GP, Garrett GE, Bohannon RW. Kinematic analysis o obstacle clearance during locomotion. Gait and posture 10: 109-120, 1999.
98. Whittle MW. Three-dimensional motion of the center of gravity of the body during walking. Human Movement Science 16: 347-355, 1997.
99. Ortega JD, Farley CT. Minimizing center of mass vertical movement increases metabolic cost in walking. J Appl Physiol 99: 2099-2107, 2005.
100. Heglund NC, Cavagna GA, Taylor CR. Energetics and mechanics of terrestrial locomotion. III. Energy changes of the centre of mass as a function of speed and body size in birds and mammals. J Exp Biol 79: 41-56,1982.
101. Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. The Journal of Experimental Biology 205: 3717–3727, 2002.
102. Kram R, Domingo A, Ferris DP. Effect of reduced gravity on the preferred walk-run transition speed. The Journal of Experimental Biology 200: 821–826, 1997.
103. Lee CR, Farley CT. Determinants of the center of mass trajectory in human walking and running. The Journal of Experimental Biology 201: 2935–2944, 1998.
104. Donelan JM, Kram R, Kuo AD. Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics 35: 117–124, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw