進階搜尋


 
系統識別號 U0026-0812200915393015
論文名稱(中文) 模糊積分型式滑動控制器應用於壓電致動平台之研究
論文名稱(英文) A Study on a Piezo Actuated Motion Stage Using Fuzzy Integral Sliding Mode Controller
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 林天俊
研究生(英文) Tian-Jiun Lin
電子信箱 n2693120@mail.ncku.edu.tw
學號 n2693120
學位類別 碩士
語文別 中文
論文頁數 103頁
口試委員 口試委員-王振興
指導教授-鄭銘揚
口試委員-莊宏祥
中文關鍵字 壓電致動器  模糊積分型滑動控制器  磁滯效應 
英文關鍵字 Piezoelectric Actuator  Fuzzy Integral Sliding-Mode controller  Hysteresis 
學科別分類
中文摘要 壓電致動器(Piezoelectric actuator,簡稱PEA)擁有高精度、質量輕、響應快、無背隙作用的優點,所以適用於精密定位。本論文主要之研究目標為壓電致動器的控制方法,實現一高精度、暫態響應快且穩定之壓電致動定位平台。然而壓電致動器具有高度非線性磁滯效應(Hysteresis),另一方面滑動控制器(Sliding Mode Controller,簡稱SMC)對於非線性元件或具有高擾動力的受控體擁有強健性,因此本論文發展以滑動控制為基礎理論的模糊積分型滑動控制器(Fuzzy Integral Sliding Mode Controller,簡稱FISMC)。藉由在切換函數中加入積分器改善一般使用飽和層的滑動控制器效能不佳的情形;並使用模糊控制器增加控制系統的強健性。由步階定位與光纖對位之實驗,結果顯示FISMC具有迅速、超越量小的定位效果。另外本論文透過循跡控制實驗測試FISMC的控制精準度。
英文摘要 Piezoelectric actuators are suitable for accurate positioning due to their high precision, light weight, fast response, and backlash-freeness. Since piezoelectric actuators possess high nonlinear hysteresis, the related control issues are investigated, and the control strategy using a fuzzy integral sliding-mode controller (FISMC) is established. By adding an integrator to the switching function, we can overcome the performance deficiency caused by the use of the saturation layer in conventional sliding-mode controller. In additions, the use of the fuzzy controller makes the control system much more robust to hysteresis effect and external disturbances. Finally, from the experimental result of step positioning and optical fiber alignmentshow that FISMC can achieve fast and small-overshoot. Moreover, the control accuracy of the FISMC can also be evaluated from the experiment of contour-tracking control.
論文目次 目 錄
中文摘要............................………………………………I
英文摘要........................……………………………….…II
誌謝.......................................................Ⅲ
目錄.........................………………………………………IV
表目錄................................………………………………VII
圖目錄........................…………………….……...……….VIII

第一章 緒論...........................……………………………1
1-1 研究背景………………...........………………………….1
1-2 文獻回顧…………………..........…………………….….1
1-3 研究動機與目的….……..........……………….........3
1-4 論文架構………………..........…………………………..4

第二章 壓電致動器介紹…………..........………………………….5
2-1 壓電效應…………….…..........…………………..…….5
2-2 潛變效應…………………..........…………………………7
2-3 磁滯現象和建模………..........…………….…………...8
2-3-1 磁滯現象…………………..........……………………………8
2-3-2 磁滯建模…………………...........………………………..13
2-4 壓電驅動器……………..........………………………...15
2-4-1 電流源驅動………….…..........…………………………15
2-4-2 電壓源驅動…….………..........…………………………15
2-5 改良式Preisach之非對稱磁滯模型………..........…...18
2-5-1 Preisach模型之描述…….………………..........………18
2-5-2 改良式Preisach模型之描.………………..........………18
2-5-3 實驗建模………….……………………..........…………21

第三章 模糊積分型滑動控制器之設計…………......……………..29
3-1 可變結構滑動控制理論…………………………….........29
3-1-1 可變結構的滑動模式……………………….......…………30
3-1-2 應用滑動控制於軌跡追蹤…………….……......…………33
3-1-3 探討飽和層帶給滑動控制系統的影響.………………......38
3-2 積分型式滑動控制加入模糊邏輯控制器………….........40
3-2-1 模糊邏輯控制器簡介………………………………….......40
3-2-2 積分型滑動控制器如何加入模糊邏輯控制器之介紹.......44
3-2-2-1 模糊邏輯控制器之設計程序……………………...........45
3-2-2-2 模糊積分型滑動控制系統架構…………………...........50

第四章 實驗結果 …………………………………………….......…51
4-1 實驗軟硬體設備概述……………………….………........51
4-2 壓電平台步階定位實驗……………………….………......58
4-3 光纖對位實驗……………………………………….........66
4-4 壓電平台軌跡追蹤實驗……………………….………......72
4-4-1 參考命令為不同頻率弦波之實驗……….…………........72
4-4-2 參考命令為連續不同振幅的弦波之實驗….…………......86
4-4-3 結合FISMC與改良型Preisach前饋補償之軌跡追蹤實驗....94

第五章 結論與建議……………………………...…………….………97
5-1 結論……………………………………………………….....97
5-2 未來研究方向與建議………………………………………...97


參考文獻…………………………………………………...……………99
參考文獻 [1] C. J. Lin and S. R. Yang, “Modeling of a Piezo-Actuator Position Stage Based on a Hysteresis Observer,” Asian Journal of Control, vol. 7, no. 1, pp. 73-80, Mar. 2005.
[2] P. N. Sreeram, G. Salvady, and N. G. Naganatham, “Hysteresis Prediction for a Piezoceramic Material System, ” in Proceedings of the 1993 ASME Winter Annual Meeting New Orlearns, New Orlearns, La, USA, ASME Aerospace Division, vol. 35, 1993, pp.35-42.
[3] P. Ge and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Transactions on Control System Technology, vol. 4, no. 3, pp. 209-216, 1996.
[4] Y. Yu, N. Naganathan, and R. Dukkipati, “Preisach Modeling of Hysteresis for Piezoceramic Actuator System,” Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, 2002.
[5] G. Song, J. Zhao, X. Zhou, and J. Alexis De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 2, pp. 198-209, 2005.
[6] 李傑仁, 具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用 , 碩士論文, 國立成功大學航太工程學系, 2003.
[7] G. Michael and C. Nikola, “Modeling Piezoelectric Stack Actuator for Control of Micromanipulation,” IEEE Control System Magazine, pp. 69-79, 1997.
[8] F. Ikhouane and J. Rodellar, “On the Hysteretic Bouc–Wen Model,” Nonlinear Dynamics vol. 42, pp. 63-78, 2005.
[9] 楊森任, 壓電致動平台之精密定位控制, 碩士論文,大葉大學機械工程學系,2004。
[10] 黃恆庭,壓電致動器磁滯模型之觀測器, 碩士論文,逢甲大學自動控制工程學系,2001。
[11] M. Y. Sung and S. J. Huang, “Fuzzy Logic Motion Control of a Piezoelectrically Actuated Table,” in Proceeding of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 218, no. 5, 2004, pp. 381-397.
[12] M. Sharma, S.P. Singh, and B.L. Sachdeva, “Fuzzy logic based active vibration control of beams using piezoelectric patches,” in Proceeding. of SPIE - The International Society for Optical Engineering, vol. 5062, no. 2, pp. 538-544, 2002.
[13] M. Sasaki, M. Kawafuku, T. Katsuno, and F. Fijisawa, “Neural Network for Trajectory Tracking Control of a Flexible Micro-Manipulator,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetic , 1996, pp. 648-654.
[14] X. Tan and J. S. Baras, “Adaptive identification and control of hysteresis in smart materials,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 827-839, 2005.
[15] C. J. Li, H. S. M. Beigi, S. Li, and J. Liang, “Nonlinear piezo-actuator control by learning self tuning regulator,” Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 720–723, 1993.
[16] P. K. Huang, P. H. Shieh, F. J. Lin, and H. J. Shie, “Sliding-mode control for a two-dimensional piezo-positioning stage,” Control Theory & Applications, IET, vol. 1, pp. 1104-1113, 2007.
[17] 劉向東、王偉, “一類遲滯模型的動態滑模跟蹤控制器設計,” 控制與決策,22卷8期,2007。
[18] 李柏均, 基於摩擦遲滯模型之順滑模態控制應用於多軸壓電奈米定位平台, 碩士論文,國立台灣大學機械工程系, 2008。
[19] 廖睿杰, DSP-Based長行程氣壓壓電高精密定位伺服系統之設計與研究, 碩士論文,國立台灣科技大學自動化及控制研究所,2004。
[20] 顧孝鈞, 壓電微致動器之製作與量測, 碩士論文,大葉大學機械工程系,2003。
[21] S. Devasia, E. Eleftheriou, and S. O. Reza Moheimani, “A Survey of Control Issues in Nanopositioning”, IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 802-823, 2007.
[22] 林政緯, 基於視覺之即時光纖對位研究, 碩士論文,國立成功大學電機工程學系,2006。
[23] 國立清華大學動力機械工程學系精密傳動實驗室,『壓電致動器介紹,』 http://www.ptlab.pme.nthu.edu.tw/class/壓電致動器介紹.pdf 。
[24] 張福學、王麗坤, 現代壓電學, 科學出版社,2001-2002。
[25] P. Ge, and M. Jouaneh, “Modeling Hysteresis in Piezoceramic Actuators,” Precision Engineering, pp. 211-221, vol. 17, no. 3, 1995.
[26] 邱志豪, 基於視覺回授與多取樣頻率控制之光纖對位研究, 碩士論文,國立成功大學電機工程學系,2007。
[27] C. Edwards, and S. K. Spurgeon, Sliding mode control: theory and applications, Taylor & Francis, 1998.
[28] W. Perruquetti, and J. P. Barbot, Sliding mode control in engineering, M. Dekker, 2002.
[29] T. C. Manjunath, “Design of Moving Sliding Surfaces in A Variable Structure Plant & Chattering Phenomena,” International Journal of Electronics, Circuits and Systems, vol. 1, no. 3, pp. 069- 076, 2006.
[30] J. Y. Hung, W. Gao, and J. C. Hung, “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[31] 劉金琨, 滑模變結構控制MATLAB仿真, 清華大學出版社,2006。
[32] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control , Springer, 1996.
[33] C. Y. Yen, F. L. Wen1, and S. J. Chiang, “Positioning Control of a Novel Thin-Disc Ultrasonic Motor using Fuzzy Sliding-Mode Control,” Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 38, no. 1, pp. 069 - 076, 2006.
[34] Z. Kovacic, and S. Bogdan, Fuzzy controller design: theory and applications, CRC/Taylor & Francis, 2006.
[35] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[36] E. H. Mamdani, “Application of Fuzzy Algorithms for Control a Simple Dynamic Plant,” in Proceeding of the Institution of Electrical Engineers, vol. 121, no. 12, pp. 1585-1588, 1974.
[37] 孫宗瀛、楊英魁, Fuzzy控制理論、實作與應用, 全華科技圖書股份有限公司,1999。
[38] 李允中、王小璠、蘇木春, 模糊理論及其應用, 全華科技圖書股份有限公司,2003。
[39] C. R. Witham, M. W. Beranek, B. R. Carlisle, E. Y. Chan, and D. G. Koshinz, “Fiber-Optic Pigtail Assembly and Attachment Alignment Shift Using a Low-Cost Robotic Platform,” in Proceeding of the IEEE Electronic Components and Technology Conference., 2000, pp. 21-25.
[40] S. H. Kim, and B. K. Kim, “Analysis on Time-Delay of Commercial Off-The-Shelf Vision System considering Motion-Blur,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, 2001, pp. 2080-2085.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw