系統識別號 U0026-0812200915390074
論文名稱(中文) 以共振超音波頻譜探討材料之黏彈性質
論文名稱(英文) Refinements on Resonant Ultrasound Spectroscopy for Measuring Viscoelastic Properties of Solids
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 周鴻儒
研究生(英文) Hung-Ju Chou
電子信箱 n6696147@mail.ncku.edu.tw
學號 n6696147
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 口試委員-黃忠信
中文關鍵字 共振超音波頻譜  黏彈性阻尼 
英文關鍵字 Resonant ultrasound spectroscopy  linear viscoelastic damping 
中文摘要 共振超音波頻譜被發展用於量測材料之性質,固體材料僅需由兩個超音波壓電傳導器和試體角點接觸的輕微力量支持,一端給予頻率振幅刺激,另一端則接收其共振波。線黏彈性阻尼在高頻的分布是本論文所著重的,搭配實驗儀器及電腦的高頻偵測範圍,其在高頻的行為是可以期待的。實驗中有多種固體材料被採用於展示其線黏彈性組尼:以ECAPed試體舉例,與未受過ECAPed試體對照,有著相似的剪力模數,但在其正切消散係數tanδ上,前者是後者的約2.5倍,分別是13.10×10-4和5.18×10-4。而由實驗所獲得金屬玻璃的剪力模數為42.37 GPa,其線黏彈性阻尼為2.79×10-4。另外,我們做了弛力退火去消除試體內的殘留應力,發現在退火前後並沒有太大的改變,在共振頻率方面最大只有3.52%的改變,而退火後的阻尼比退火前的減少,驗證了差排密度影響了阻尼,差排密度越小、阻尼也越小。實驗裡,鋁試體的前幾個共振模態被發現有頻率分裂的現象,有限元素軟體模擬也驗證了此現象,其各模態的阻尼隨著共振頻率增加而減少。此外,以較小試體組合而成之鋁複合金屬,其金屬間的膠影響了阻尼,其阻尼大約是正常試體的79倍,分別是12.23×10-2 和 15.49×10-4,而同樣的情形也發生在錫複合金屬,其阻尼的大小約是正常試體的74倍,分別是13.97×10-2 到 18.98×10-4。最後,和Lorentzian curve fit的結果作比較,兩者間是完美一致的。
英文摘要 Resonant ultrasound spectroscopy (RUS) has been developed for measuring the elastic constants of materials. The RUS techniques require only slightly corner contact force to mount specimens between two transducers. One transducer gives an amplitude and frequency excitation to a sample, and the other as a resonant receiver. In this thesis, we focus on the linear viscoelastic damping of materials (such as Al, Sn, SS & Cu) and their behavior at high frequency. RUS provides a large frequency range of scientific interest. We adopted various specimens to demonstrate the linear viscoelastic damping. For the ECAP (Equal-Channel-Angular-Process) sample, the sub-micro grain specimens showed similar shear modulus, but larger damping, when compared with their large grain counter part. The loss tangent damping of ECAPed aluminum is about 2.5 times as large as the damping of UnECAPed one, they are 13.10×10-4 and 5.18×10-4, respectively. The shear modulus of Zr-based metallic glass is 42.37 GPa, and we get the linear viscoelastic damping which is 2.79×10-4. In order to eliminate residue stress from samples, stress relief annealing is required. There are no obvious changes in resonant frequencies and modulus between annealed & un-annealed samples, it is 3.52 % for resonant peak shift in maximum, and the damping of annealed ones decrease compared with un-annealed, indicating dislocation density affects damping. Lower dislocation density reduces damping. We also detect the lowest several modes for aluminum cube, there is frequency-split phenomenon due to lack of symmetry of the material, and ABAQUS simulation is performed for conformation. The linear viscoelastic damping is found decreasing as frequency increase. This is a strong evidence for dislocation-based damping mechanics. Small copper and tin cubes are combined by glue to be a lattice-like cube which compared with full cube, we observed that is the glue provides too much damping, the damping of combined copper cube is about 79 times as large as the damping of full cube which is from 12.23×10-2 to 15.49×10-4, and so occurred in tin sample that is 74 times which from 13.97×10-2 to 18.98×10-4. Lorentzian curve fit is widely used to fit the resonant peak for data in experiment, it is almost perfect consistency.
中文摘要 III
Chapter 1 Introduction 1
1.1 Motivation and Goals 1
1.2 Literature survey 3
1.3 Outline 5
Chapter 2 Theoretical aspects 6
2.1 Theory of RUS 6
2.2 Numerical simulation 9
2.3 Theory of Lock-In Amplifier 11
2.4 Equal Channel Angular Processing 13
2.5 Damping calculation 14
Chapter 3 Experimental aspects 15
3.1 Apparatus 16
3.1.1 Piezoelectric shear transducer and holder 16
3.1.2 National Instrument: PXI (PCI eXtensions for Instrumentation) 16
3.1.3 Function generator 16
3.1.4 Preamplifier 16
3.1.5 Oscilloscope 17
3.1.6 Lock-In amplifier 17
3.2 Data acquisition techniques 22
3.2.1 NI system 22
3.2.2 Agilent system 24
Chapter 4 Results and Discussion 27
4.1 Viscoelastic properties of polycrystal metals 27
4.1.1 ECAPed aluminum 29
4.1.2 UnECAPed aluminum 31
4.1.3 Aluminum 35 Lowest several fundamental modes 38 Finite element simulation 40 Numerical simulation 44
4.1.5 Tin 47
4.2 Viscoelastic properties of metallic glass 48
4.3 Viscoelastic properties of metallic composites 50
4.3.1 Copper-based metallic 51
4.3.2 Tin-based metallic 55
Chapter 5 Conclusions and Future Works 58
5.1 Conclusions 58
5.2 Future works 59
Appendix A: Matlab FFT program 63
Appendix B: LabVIEW graphical programming language software 64
Appendix C: Wave ultrasound results 65
Vita 67
參考文獻 1 A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy, Wiley,New York (1997).
2 R. G. Leisure, K. Foster, J. E. Hightower and D. S. Agosta, Internal friction studies by resonant ultrasound spectroscopy, Materials Science and Engineering A 370, 1-2, 34-40, April (2004).
3 J.L. Sarrao, S.R. Chen, W.M. Visscher, Ming Lei, U.F. Kocks, and A. Migliori, Determination of the crystallographic orientation of a single crystal using resonant ultrasound spectroscopy, Review of Scientific Instruments 65, 6, 2139-2140, June (1994).
4 H.J. McSkimin, Ultrasonic Measurement Techniques Applicable to Small Solid Specimens, J. Acoust. Soc. Am. 22, 413-418 (1950).
5 H.J. McSkimin, Pulse Superposition Method for Measuring Ultrasonic Wave Velocities in Solids, J. Acoust. Soc. Am. 33, 12-16 (1961).
6 D. B. Poker, R. B. Schwarz, and A. V. Granato,, J. Phys. Paris Colloq. 46, C10-123 (1985).
7 Yong-Moo Cheong, Hyun-Kyu Jung, Young-Sang Joo, Sung-Soo Kim, Young-Suk Kim, Dynamic elastic constants of anisotropic materials by resonant ultrasound spectroscopy, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47, 3, 559-564, May (2000).
8 Albert Migliori, and J.D. Maynard, Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens, Review of Scientific Instruments 76, 12, 121301-1-121301-7 (2005).
9 W. Thompson (Lord Kelvin), On the rigidity of the earth, Philos. Trans. Royal Soc. 153, 573 (1863).
10 H. Lamb, On the vibration of an elastic sphere, Proc. Math. Soc. 13 (1882).
11 A.E.H. Love, in: A Treatise on the Mathematical Theory of Elasticity, Dover Publications, 278 (1994).
12 I. Ohno, Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals, J. Phys. Earth 24, 355 (1976).
13 I. Ohno, S. Yamamoto, O.L. Anderson, J. Noda, J. Phys. Chem. Solid 47 (1986).
14 J.D. Maynard, Resonant ultrasound spectroscopy, Proceedings of SPIE - The International Society for Optical Engineering 3341, 132-142 (1998).
16 B. J. Zadler, Jérôme H. L. Le Rousseau, J. A. Scales and M. L. Smith, Resonant Ultrasound Spectroscopy: theory and application, Geophysical Journal International 156, 154-169 (2004).
17 R. D. Mindlin, Stress-strain relations and vibrations of a granular medium, J. Appl. Phys. 27, 1462 (1956).
18 T. Lee and R.S. Lakes, Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy, Review of Scientific Instruments 71, 7, 2855-2861 (2000).
19 Akira Yoneda, Yoshitaka Aizawa, Md. Mahbubar Rahman and Shunsuke Sakai, High frequency resonant ultrasound spectroscopy to 50 MHz: Experimental developments and analytical refinement, Japanese Journal of Applied Physics 1, 46, 12, 7898-7903, Dec 6 (2007).
20 N. Nobutomo, H Ogi, H. Masahiko, and T. Ono, Determination of anisotropic elastic constants of superlattice thin films by resonant-ultrasound spectroscopy, Journal of Applied Physics 97, 1, 013532-1-013532-6, Jan (2005).
21 Hirotsugu Ogi, Nobutomo Nakamura, and Masahiko Hirao, Advanced resonant-ultrasound spectroscopy for studying anisotropic elastic constants of thin films, Materials Research Society Symposium Proceedings 875, Thin Films - Stresses and Mechanical Properties XI, 675-663 (2005).
22 J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So and J. D. Maynard, Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin, Journal of Biomechanics 37, 4, 437-441, April (2004).
23 A. Migliori, T.W. Darling, Ultrasonics 34 (1996).
24 Using Resonant Inspection in Production Environment, Quasar International, Inc., Albuquerque, NM
25 A. Migliori, T.M. Bell, R.D. Dixon, R. Strong, Los Alamos National Laboratory Report LA-UR-93-225 (1993).
26 A. Migliori, T.W. Darling, Los Alamos National Laboratory Report LALP-95-9 (1995).
27 H. Ledbetter, P. Heyliger, K.-C. Pei, S. Kim, C. Fortunko, Review of the Progress in Quantitative Nondestructive Evaluation 14, 2019-2025 (1995).
28 R. S. Lakes, Viscoelastic Solids, CRC Press, New York 77-81 (1999).
29 H. H. Demarest, Jr., Cube-resonance method to determine the elastic constants of solids, J. Acoust. Soc. Am. 49, 3, 2, 768-775, March (1971).
30 W. P. Mason, Physical acoustics principles and methods, Academic Press, New York, 130-139 (1964).
31 Hiram Brown, Aluminum and its application, Pitman Publishing, New York, 157 (1948).
32 George Krauss, Principles of Heat Treatment of Steel, 119 (1980).
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-31起公開。

  • 如您有疑問,請聯絡圖書館