進階搜尋


 
系統識別號 U0026-0812200915380298
論文名稱(中文) 陣列式PZT水聽器與快速超音波聲場量測系統之開發
論文名稱(英文) The Development of Linear PZT Hydrophone Array and Rapid Ultrasound Scanning System
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 江常睿
研究生(英文) Chang-Ray Chiang
電子信箱 N1696131@mail.ncku.edu.tw
學號 N1696131
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-李永春
口試委員-趙儒民
口試委員-涂季平
口試委員-王逸君
中文關鍵字 水聽器陣列  超音波聲場掃描  水聽器校正  PZT水聽器 
英文關鍵字 PZT hydrophones  Calibration  ultrasound pressure field  Hydrophone array 
學科別分類
中文摘要 本文開發新式一維陣列式水聽器,應用於快速超音波聲場分佈量測系統。此水聽器以16個壓力感測器排列成線性陣列,使用面積1 之PZT壓電陶瓷作為感測元件;感測元件裝置於多層印刷電路板側邊,電路板上佈有16條訊號傳輸線及其後端連接器;水聽器本體以多層金屬導體包覆於外提供良好的電磁屏蔽,外圍再以固化膠密閉提供防水保固。為了能達到快速訊號擷取以及降低儀器成本之訴求,本文製作一個16:4多工器,將訊號通路依序切換,以減少儀器需求。
基於上述之元件,可以架構一個快速超音波XY平面掃描系統。在使用定位與量測同步之系統操控方式下,完整量測48x48 的平面聲場分佈資訊僅需花費40秒。而且,由於陣列式水聽器線狀的銳利外型,可以有效降低對入射聲波的反射,該掃描系統可以同時用於近場與遠場的聲場分佈量測,所得資訊得以計算聲源實際的聲學輸出功率。
為了確保量測數值的絕對正確性,本一維陣列式水聽器的每一個感測元件,皆以比較式校正法謹慎校正;此外,並且發展自身互易性校正(Self-Reciprocity Calibration) 技術,可以直接對水聽器作絕對性校正。此低成本及高效率-準確度之快速量測系統,得以提供眾多超音波產品一個有效的生產線上檢測解決方案。
英文摘要 A novel underwater ultrasound measurement system is proposed to rapidly measure the acoustic pressure distribution of a low frequency ultrasound source. To measure both the near- and far-field pressure distribution, a 16-elements 1-D PZT hydrophone sensing array is designed and fabricated by integrating the printed circuit board (PCB) sandwich structure and therefore to form a multi-point, small-sensing and good shielded ultrasound receiver. Knife-like shape minimize the reflection from hydrophone surface. For calibrating the hydrophone array, a commercial calibrated hydrophone is used as the calibrating reference. For speedy data acquisition, several 4:1 high speed multiplexers and a four channels digital oscilloscope are used for collecting the time-domain waveforms in a pitch-catch mode. Furthermore, a high precision XY moving stage is integrated to the system and thus a high-density, PC-Based ultrasound measurement system is established. For system validation, the near- and far-field pressure distribution of a 1-MHz ultrasound source is measured in a 48×48 mm2 square area using a single sensing needle type hydrophone and the proposed PZT hydrophone array respectively. It is proved that the acoustic field can be obtained in 40seconds by the proposed measurement system. Measurement result also shows good agreement between two types hydrophone. Potential applications of the rapid measurement system are addressed.
論文目次 摘 要 I

Abstract II

致謝 III

目錄 IV

圖目錄 VI

符號表 X

第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 3
1.3 本文架構 5

第二章 針尖式水聽器之特性與聲場掃描 7
2.1 壓電材料概述 7
2.2 針尖式水聽器之組成 9
2.3 水聽器之靈敏度 13
2.4 水聽器之方向性 13
2.5 水聽器的有效半徑 18
2.6 針尖式水聽器聲場掃描 19
2.6.1 針尖式水聽器之架設 19
2.6.2 針尖式水聽器聲場掃描系統 22
2.6.3 聲場對能量之計算 26

第三章 水聽器之靈敏度校正 28
3.1 比較式校正 28
3.2 互易性校正 30
3.2.1 互易性校正理論 30
3.2.2 互易性校正實作 35

第四章 一維線狀陣列式水聽器之設計與製作 40
4.1 一維陣列式水聽器之設計訴求 40
4.2 一維陣列式水聽器製作流程 44
4.3 一維陣列式水聽器夾持載台設計 50
4.4 一維陣列式水聽器特性量測 52

第五章 一維陣列式水聽器快速聲場量測系統 60
5.1 快速聲場量測系統架構 60
5.2 多通道控制電路器設計 62
5-3 量測系統控制程式 69
5.4 快速聲場量測系統之使用與數據計算 72
5.5 量測結果比較 75

第六章 結論與探討 84
6.1 結論 84
6.2 討論與未來展望 86

參考文獻 88
附錄 A 93
附錄 B 94
附錄 C 95
附錄 D 多工器ADG 1201特性規格表 96
參考文獻 [1] H. Kitsunai, T. Suzuki, M. Ishikawa, N. Kawashima, E. Ohdaira, M. Kurosawa, and S. Takeuchi, “Development of miniature hydrophone with PZT film deposited by hydrothermal method,” IEEE Ultrasonics Symposium (2004).
[2] H. Kawai, “The Piezoelectricity of Poly(vinylidene Fluoride),” Japanese Journal of Applied Physics, 8 (1969) 975-976.
[3] F. Bauer, “PVDF Shock Sensors: Applications to Polar Materials and High Explosives,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(6) (2000) 1448-1454.
[4] Y. Yuan, B. Shi and Z. Liu, “A new Multilayer Planar PVDF Standard Hydrophone and its Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42(5) (1995) 958-964.
[5] A. Hurrell and F. Duck, “A Two-Dimensional Hydrophone Array Using Piezo-Electric PVDF,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(6) (2000) 1345-1353.
[6] P. A. Lewin, “Miniature Piezoelectric Polymer Ultrasonic Hydrophone Probes,” Ultrasonics, 19 (1981) 213-216.
[7] G. R. Harris, “Sensitivity Considerations for PVDF Hydrophone Using the Spot-Poled Membrane Design,” IEEE Transactions on Sonics and Ultrasonics, SU-29, 6 (1982) 370-377.
[8] J. M. Cannata, J. A. Williams and K. K. Shung, “A Kerfless 30 MHz Linear Ultrasonic Array, ” IEEE Ultrasonics Symposium (2005).
[9] S. T. Lau, K. W. Kwok, H. L. W. Chan, and C. L. Choy, “Piezoelectric Composite Hydrophone Array,” Sensors & Actuators - Part A - Physical Sensors, 96 (2002) 14-20.
[10] N. Okada, M. Takabe, M. Otonari, D. Akai, K. Sawada and M. Ishida, “Evaluation of 2D Hydrophone Array System Using Epitaxial PZT Thin Film Grown on Epitaxial Γ-Al2O3/Si Substrate,” IEEE Ultrasonics Symposium (2007).
[11] W. R. MacLean, “Absolute Measurement of Sound without a Primary Standard, ” The Journal of the Acoustical Society of America, 12 (1940) 140-146.
[12] R. K. Cook, “Absolute Pressure Calibration of Microphones,” The Journal of the Acoustical Society of America, 12 (1941) 415-420.
[13] B. D. Simmons and R. J. Urick, “The Plane Wave Reciprocity Parameter and Its Application to the Calibration of Electroacoustic Transducers at Close Distance,” The Journal of the Acoustical Society of America, 21 (1949) 633.
[14] R. J. Bobber and G. A. Sabin, “Cylindrical Wave Reciprocity Parameter,” The Journal of the Acoustical Society of America, 33 (1961) 446-451.

[15] L. G. Beatty, “Reciprocity Calibration in a Tube with Active Impedance Termination,” The Journal of the Acoustical Society of America, 39 (1966) 40-47.
[16] B. Fay, “Numerische Berechnung der Beugungsverluste,” Acustica, 36 (1976) 209-213.
[17] K. Beissner, “Free-field Reciprocity Calibration in the Transition Range between near Field and far Field,” Acustica, 46 (1980) 162.
[18] G. Ludwig and K. Brendel, “Calibration of Hydrophones Based on Reciprocity and Time Delay Spectrometry,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 35 (1988) 168.
[19] W. Shou, S. Duan, P. He, R. Xia and D Qian, “Calibration of a Focusing Transducer and Miniature Hydrophone As Well As Acoustic Power Measurement Based on Free-Field Reciprocity in a Spherically Focused Wave Field,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (2006) 564.
[20] A. Penttinen and M. Luukkala, “Diffraction Losses Associated with Curved Ultrasoinc Transducers,” Journal of Applied Physics D: Applied Physics, 10 (1977) 665.
[21] H. T. O’Neil , ”Theory of focusing radiators,” Journal of the Acoustical Society of America, 21(5) (1949) 516–527.
[22] R. J. Bubber, “Underwater Electroacoustic Measurements,” Peninsula Publishing, (1970).
[23] V. Devaraju, P. A. Lewin and H. Bleeker, “Determination of Sensitivity Versus Frequency Characteristics of Miniature Ultrasonic Hydrophones Below 1 MHz Using Planar Scanning Technique”, Journal of Ultrasound in Medicine, 21 (2002) 261.
[24] B.A. Herman and G.R. Harris, “Calibration of Miniature Ultrasonic Receivers Using a Planar Scanning Technique,” Journal of the Acoustical Society of America, 72 (1982) 1357.
[25] D. R. Bacon, “Primary Calibration of Ultrasonic Hydrophones Using Optical Interferometry,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (2006) 564.
[26] IEC 62127, “Measurement and characterization of medical ultrasonic fields up to 40 MHz,” International Electrotechnical Commission, (2007).
[27] 邱巨霖, “壓電式PVDF水聽器與解析式超音波換能器之研究, ” 國立成功大學機械工程研究所碩士論文, 2006.
[28] C. H. Chung and Y. C. Lee, ” Nondestructive Determination of Elastic Constants of Thin Isotropic Plates Based on Poly(vinylidene fluoride–trifluoroethylene) Copolymer Ultrasound Focusing Transducers and Lamb Wave Measurements,” Japanese Journal of Applied Physics, 48 (2009) 046506-1.
[29] 黃祥紋, “PVDF水下聽音器之製作與特性量測,” 國立成功大學機械工程研究所碩士論文, 2005.
[30] L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, “FUNDAMENTALS OF ACOUSTICS,” John Wiley & Sons Publishing, 1980.
[31] R. J. Bobber, “General Reciprocity Parameter,” The Journal of the Acoustical Society of America, 39 (1966) 680.
[32] ADG 1204 Datasheet, Analog Device, Inc., 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw