進階搜尋


 
系統識別號 U0026-0812200915351677
論文名稱(中文) 以磁控濺鍍法備製催化劑合成氣相生長碳纖維之研究
論文名稱(英文) Sputter Deposited Catalysts for the Synthesis of Vapor Growth Carbon Fiber
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 詹明諺
研究生(英文) Ming-Yan Jhan
電子信箱 n5696112@mail.ncku.edu.tw
學號 n5696112
學位類別 碩士
語文別 中文
論文頁數 101頁
口試委員 指導教授-丁志明
口試委員-郭瑞昭
口試委員-廖坤厚
中文關鍵字 氣相成長碳纖維  基板接種法 
英文關鍵字 Vapor Growth Carbon Fiber  Substrate-seeding catalyst 
學科別分類
中文摘要 本研究以磁控濺渡法製備催化劑,以期成長高密度之氣相成長碳纖維(VGCF),並針對Fe催化劑在矽、石英及碳/碳複合材料基板上不同表現,而了解其生長之要素。研究中也改變了其他參數:催化劑厚度、熱處理時間、氣體濃度及反應時間,用來找出使用濺渡催化劑法生長VGCF之最佳要素。另一部份則探討添加奈米氧化鋁粉末對生長VGCF之影響。在微結構分析上以掃瞄式電子顯微鏡(SEM)、X光繞射儀(X-Ray)、光電子能譜儀(XPS)及穿透式電子顯微鏡(TEM),對其催化劑或VGCF檢測其形貌、結構與化學特質。
由實驗結果得知使用磁控濺渡法能得到相當緻密之催化劑,而在高溫熱處理後,此薄膜會成核成長為顆粒,經由XRD分析得知其結構為Fe3O4,接著再靠著甲烷的裂解、沉積與擴散,進而催化成長VGCF,在基板成長VGCF的密度表現上,以矽為最佳,能夠生長出濃密的VGCF墊片,而以碳/碳複合材料為最差。其他控制成長參數,如催化劑厚度及反應時間等則能對VGCF之直徑造成影響。最後添加奈米氧化鋁粉於碳/碳複合材料中能有效之提升VGCF之產率,推估是由於氧化鋁粉末能有效分散催化劑,而使得在生長VGCF有較好的表現。
英文摘要 In order to obtain vapor-grown carbon fibers(VGCFs) by the sputtering catalyst method, experimental and analytical examinations were carried out. Using Fe as catalyst, under several experimental parameters, such as substrate types (Silicon, C/C composite, and quartz), rough surface of substrate, and catalyst thick. After heat treatment, catalyst on substrate become particles, and it shows Fe3O4 structure by XRD analysis, the density of catalyst particles dispersion shows low on C/C substrate since the porous surface. After growth, it shows high quantity carbon fibers on Silicon substrate but low quantity on C/C composite substrate. Obtained carbon fibers exhibited different diameters with different catalyst thick. By addition aluminium oxide nanopowder can make catalyst dispersion well on C/C substrate, and increase VGCFs density.
論文目次 摘要……………………………………………………………………Ⅰ
Abstract………………………………………………………………Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
表目錄…………………………………………………………………Ⅶ
圖目錄…………………………………………………………………Ⅷ
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧與理論說明 4
2-1碳纖維的製備 4
2-1-1 丙烯晴基(PAN)碳纖維製成 4
2-1-2 瀝青碳纖維製成 6
2-1-3 氣相成長製程碳纖維(VGCFs) 6
2-2 VGCFs的優點和應用 8
2-3 奈米碳管及次微米碳管 9
2-4次微米碳纖維 15
2-5 VGCF之微結構 17
2-6 熱力學分析 17
2-7 VGCF成長機制 19
2-7-1 碳原子的擴散路徑 21
2-7-2 成長起源:底部成長模式及頂部成長模式 22
2-7-3 VGCF之生長形狀 25
2-8 影響VGCF成長之因素 26
第三章 實驗 28
3-1實驗流程 28
3-2製程設備 30
3-2-1 磁控濺鍍系統(Magnetron Sputtering System) 30
3-2-2 化學氣相沉積系統 30
3-3實驗材料 32
3-3-1 實驗材料 32
3-3-2 反應氣體 33
3-3-3 基材清潔 33
3-4氣相成長碳維纖之步驟 34
3-5分析及鑑定 35
3-5-1 表面形態觀察 35
3-5-2 微結構分析 35
3-5-3 X光光電子能譜分析 35
3-5-4 X-ray繞射分析 36
第四章 結果與討論 38
4-1催化劑製備 38
4-2催化劑之特性分析 39
4-2-1 在碳/碳複合材基板的表現 39
4-2-2 在石英基板的表現 46
4-2-3 在矽單晶基板的表現 51
4-3氣相成長碳纖維的成長與特性分析 60
4-3-1 氣相成長碳纖維之成長過程 60
4-3-2 不同基板材料之影響 63
4-3-3 不同催化劑厚度之影響 66
4-3-4還原時間之影響 74
4-3-5反應時間之影響 78
4-3-6氣體濃度之影響 80
4-4 添加奈米氧化鋁粉對氣相生長碳纖維之影響 83
4-4-1 添加奈米氧化鋁粉於矽基板中 83
4-4-2 添加奈米氧化鋁粉於碳/碳複合基板中 87
4-5 奈米碳纖維之TEM分析 91
第五章 結論 96
參考文獻 [1] 大谷杉郎, 大谷朝男著, 賴耿陽譯,“碳纖維材料入門”P.35, 1983.
[2] M. S. Dresselhara, G. Dresselhara, K. Sugihara,“Graphite Fibers and Filaments”. Springer Series, in Material Science, 5, 1988.
[3] Jyh-Ming Ting, Max L. Lake, David R. Duffy,“ Composites based on thermally hyperuconductive vapor grown carbon fiber”. Journal of Materials Research, 10 (1995) 1478-1484.
[4] M. Endo,“Grow carbon fibers in the vapor phase”. Chemtech September, (1988) 568-576.
[5] M. Kataumata and M. Endo,“Electrical-Properties of Plastic Composites Using Br2-Intercalated Vapor-Grown Carbon-Fibers as a Conductive Filler”. Journal of Materials Research, 9 (1994) 1829-1833.
[6] Jyh-Ming Ting,Max L. Lake,“Vapor-grown carbon-fiber reinforced carbon composites”. Carbon, 33 (1995) 663-667.
[7] 遠藤守信,“奈米碳素的構造及新機能”,炭素. 2001,No.200,pp.202-205.
[8] S. Iijima,“Helical microtubules of graphitic carbon”.Nature, 354 (1991) 56-58.
[9] S. Iijima and T. Ichihashi,“Single - shell carbon nanotubes of 1-nm diameter”. Nature, 363 (1993) 603.
[10] Tomita Masato, Saito Yahachi, Hayashi Takayoshi,“LAC2 Encapsulated in graphite nanparticle”. Japanese Journal of Applied Physics, Part 2: Letters, 32 (1993) 280-282.
[11] Ajayan-PM, Lambert-JM, Bernier-P, Barbedette-L, Colliex-C, Planeix-JM,“Growth morphologies during cobalt-catalyzed single- shell carbon nanotube synthesis”. Chemical Physics Letters, 215 (1993) 509-517.
[12] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers,“Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer wall”. Nature, 363 (1993) 605.
[13] J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, J. Castaing,“Improving conditions towards isolating single- shell carbon nanotubes”. Chemical Physics Letters, 226 (1993) 364-371.
[14] C. Journet, P. Bernier,“Production of carbon nanotubes”. Applied Physics A: Materials Science & Processing, 67 (1998) 1-9.
[15] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley,“ Self-assembly of tubular fullerenes”. Journal of Physical Chemistry, 99 (1995) 10694-1069.
[16] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”. Chemical Physics Letters, 243 (1995) 49-54.
[17] L. P. F. Chibante, A. Thess, J. M. Alford, M. D. Diener, R. E. Smallry,“Solar generation of the fullerenes”. Journal of Physical Chemistry, 97 (1993) 8696-8700.
[18] C. L. Fields, J. R. Pitts, M. J. Hale, C. Bingham, A. Lewandowski, D. E. King, “ Formation of fullerenes in highly concentrated solar flux”. Journal of Physical Chemistry, 97 (1993) 8701-8702.
[19] Masako Yudasaka, Rie Kikuchi, Takeo Matsui, Yoshimasa Ohki, and Susumu Yoshimura, “Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition”. Applied Physics Letters, 67 (1995) 2477.
[20] J.M. Ting and J. R. Guth, Ext. Abs. 22nd Bien. Conf. Carbon, p.296, July, 1995.
[21] A. Oberlin, M. Endo, and T. Koyama,“High resolution electron microscope observations of graphitized carbon fibers”. Carbon, 14 (1976) 133.
[22] J.M. Ting, N. Z. Huang, and B. C. Lan,“TEM observation of carbon tubes produced by a continuous process”. Journal of Materials Science 34 (1999) 5233-5235.
[23] D. P. Anderson, J.M. Ting, M. L. Lake, and R. L. Alig, Ext. Abs. 21st Bien. Conf. Carbon, p.304, July, 1995.
[24] M. Endo, A. Oberlin, T. Koyama,“Filamentous growth of carbon through benzene decomposition”. Journal of Crystal Growth, 32 (1976) 335-349.
[25] T. Hashishin, H. Iwanaga, M. Ichihara, S.R. Mukai,“Core structure of vapor grown carbon fibers and morphology dependence of tensile strength”. Carbon, 41 (2003) 343–349
[26] “JANAF Thermodynamical Table”ed. by R. H. Rerry et al., Nation Standard Reference Data System-NBS 37, 2/e, June 1971.
[27] Ihsan Barin,“Thermochemical Data of Pure Substance”, 3rd.
[28] M. S. Dresselhara, G. Dresselhara, K. Sugihara, I. L. Spain, H. A. Golderg,“ Graphite Fibers and Filaments”, chapter2, 1988.
[29] R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite,“Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene”. Journal of Catalysis, 30 (1973) 86.
[30] A. Oberlin, M. Endo, T. Koyama,“High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”. Jap. J. Appl. Phys., 16[9] (1997) 1519.
[31] R. T. K. Baker,“Catalytic growth of carbon filaments”. Carbon, 27(3) (1989) 315.
[32] O. A. Louchev, Y. Sato, and H. Kanda,“Growth mechanism of carbon nanotube forests by chemical vapor deposition,”. Appl. Phys. Lett., 80 (2002) 2752.
[33] A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson,“Transition between base and tip carbon nanofiber growth modes”. Chem. Phys. Lett., 356 (2002) 527.
[34] Audier M, Bowen P, Jones W ,“Electron microscopic and moessbauer study of the iron carbides(Fe3C and x-Fe5C2) formed during the disproportionation of carbon momoxide”. J Cryst Growth , 64 (1983) 271.
[35]Rodriguez N M. “A review of catalytically grown carbon nanofibers”. J Mater Res, 8 (1992) 3233.
[36]Krishnankutty N, Rodriguez N M, Baker R T K. “Effect of copper on the decomposition of ethylene over an iron catalyst ”. J Catal, 158 (1996) 217
[37]Kim M S, Rodriguez N M, Baker R T K. “The interplay between sulfur adsorption and carbon deposition on cobalt catalysts”. J Catal, 143 (1993) 449.
[38] Downs W B, Baker R T K. “Preserving carbon fiber strength during CVD of catalytic carbon filaments”. Extended abstracts of 20th Biennial Conference on Carbon. Santa Barbara, CA, 1991.318
[39] Kato T, Kusakabe K, Morooka S. “ Process of formation of vapor-grown carbon fibers by gas-phase reaction using ultrafine iron catalyst particles”. J Mater Sci Lett, 11 (1992) 674.
[40] Rodriguez N M, Chambers A, Baker R T K. “ Catalytic Engineering of carbon nanostructures”. Langmuir, 11(1995) 3862.
[41] Chambers A, Rodriguez N M,Baker R T K. “Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene”. J Mater Res,11 (1996) 430
[42] H.Wang, J.Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, “A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission”. Carbon, 46 (2008) 969-973
[43]M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”. Appl. Phys. Lett., 77 (2000) 3468.
[44]C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, “ Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition”. Appl. Phys. Lett., 77 (2000) 2767
[45]Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition”. Appl. Phys. Lett., 76 (2000) 2367.
[46] N.S. McIntyre, D.G. Zetaruk,“X-ray Photoelectron Spectroscopic Studies of Iron Oxides”. ANALYTICAL CHEMISTRY, 49 (1977) 1521.
[47]R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, D.J.C. Yates, “ Effect of the surface state of iron on filamentous carbon formations”. J Catalysis ,77 (1982) 74.
[48] L Jodin, AC Dupuis, E Rouviere, P Reiss. “Influence of the Catalyst Type on the Growth of Carbon Nanotubes via Methane Chemical Vapor Deposition”. J. Phys. Chem. B , 110 (2006) 7328-7333
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw