進階搜尋


 
系統識別號 U0026-0812200915350765
論文名稱(中文) 利用回授線性化與順滑模態控制之球與球系統的平衡控制
論文名稱(英文) Balance Control of Ball on Ball Systems Using Feedback Linearization and Sliding Mode Control
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 劉士源
研究生(英文) Shih-yuan Liu
學號 n9696403
學位類別 碩士
語文別 中文
論文頁數 173頁
口試委員 口試委員-林鐘烲
口試委員-陳信助
口試委員-蕭霖癸
口試委員-楊松霈
指導教授-何明字
中文關鍵字 球與球系統  順滑模態控制法  回授線性化 
英文關鍵字 feedback linearization  ball and ball system  sliding mode control 
學科別分類
中文摘要 基於架構簡單的原因,倒單擺、球與桿、倒三角等為控制實驗教育上或學術研究上常見之機電系統。上述的這些機電系統之共同特點為其皆具欠致動性,又因這些機電系統先天上為非線性且不穩定的系統,因此常被用來驗證先進的非線性控制理論的效能。回授線性化與順滑模態控制法則在非線性控制系統設計上不管於理論發展或實務應用方面,近幾年來皆受到相當高程度之重視。回授線性化的主要精神在於利用變數變換將非線性系統轉換成線性系統,然後就可以利用早已發展完善的線性系統控制理論,針對轉換過的線性系統去設計控制器以達到穩定化及特定性能之控制目的。順滑模態控制法則是利用選定一個順滑面後驅使系統的初始狀態能在有限時間內接觸到順滑面且不再脫離順滑面,並朝向平衡點的方向移動。順滑模態的好處是面對系統的非線性及不確定性能具有較好的強健性。本論文旨在建立一組嶄新的機電實驗系統架構「球與球系統」,此系統由直流馬達帶動大球滾動使小球能立在大球上達到平衡。於論文中吾人利用回授線性化與順滑模態控制法來設計使系統穩定之控制器,最後利用數位訊號處理器實現控制法則,並以實驗與模擬來驗證控制系統之性能。
英文摘要 Due to structural simplicity, inverted pendulum, ball and beam, and seesaw, etc. are experimental benchmarks for control education and research. Moreover, most aforementioned mechatronic systems are underactuated. Due to inherent nonlinearity and instability of these experimental benchmarks, these systems provide platforms for verifying the effectiveness of the advanced methodologies in nonlinear control. Feedback linearization and sliding mode control are the approaches to nonlinear control design which have attracted a great research interest in recent years. The idea of feedback linearization is to find a transformation that transforms the nonlinear system into a linear system. Then, the design can be carried out on this new linear model using the well-established linear control design techniques. The idea of sliding mode control is to choose a sliding surface that makes the initial state to approach the sliding surface in finite time and stay on the sliding surface. It then moves to the equilibrium point. The advantages of sliding mode control are to have good robustness against nonlinerity and uncertainties. This thesis is to introduce and build a novel mechatronic system, ball and ball system. This system consists of dc motors that drive a big ball to keep a small ball staying on the big ball. Feedback linearization and sliding mode control are used to design a stabilizing controller. Finally, the control laws are implemented through a digital signal processor. The effectiveness of the designed control laws is verified through simulation and experimental studies.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 V
圖表目錄 IX
第一章 緒論 1-1
1-1 研究背景 1-1
1-2 研究目的 1-3
1-3 研究步驟 1-4
1-4 相關文獻探討 1-6
1-5 實驗室相關成果 1-7
1-6 論文結構 1-8
第二章 視覺伺服位置偵測 2-1
2-1 前言 2-1
2-2 數位影像處理簡介 2-1
2-3 針孔成像模型 2-2
2-4 相機內部參數與參數估測 2-4
2-6 物體偵測流程規劃 2-9
2-6-1 影像二值化 2-9
2-6-2 重心計算演算法 2-10
2-7 影像處理流程規劃 2-11
第三章 座標軸轉換 3-1
3-1 前言 3-1
3-2 座標軸轉換簡介[49] 3-1
3-3 座標軸旋轉 3-3
3-3-1 固定體旋轉(Body-Fixed Rotations) 3-8
3-3-2 固定空間旋轉(Space-Fixed Rotations) 3-10
3-4 旋轉矩陣與角速度之關係 3-13
第四章 直流伺服馬達和球與球系統數學模型 4-1
4-1 前言 4-1
4-2 球與球系統數學模型之建立 4-2
4-3 永磁式直流馬達數學模型之建立 4-19
4-4 球與球系統整體數學模型 4-25
第五章 回授線性化理論探討 5-1
5-1 前言 5-1
5-2 輸入-輸出線性化 5-1
5-3 全狀態線性化 5-4
第六章 順滑模態控制理論探討 6-1
6-1 前言 6-1
6-2 順滑模態的介紹 6-1
6-3 順滑條件與迫進條件之探討 6-2
6-4 順滑模態設計方法 6-4
6-5 滑動層的考量 6-6
第七章 平衡控制器設計與模擬結果 7-1
7-1 前言 7-1
7-2 全狀態回授控制器之設計過程 7-1
7-3 極點配置法介紹與控制器設計與系統模擬結果 7-7
7-4 順滑模態控制器設計與模擬結果 7-12
7-5 LQR控制器理論與平衡控制器之設計與模擬結果 7-17
7-6 模擬響應比較 7-23
第八章 球與球系統機構製作 8-1
8-1 前言 8-1
8-2 球與球系統機構設計與製作 8-1
8-3 馬達角度感測器 8-6
第九章 外部硬體電路介紹 9-1
9-1 前言 9-1
9-2 周邊硬體電路與規格 9-1
9-2-1 外部記憶體 9-1
9-2-2 PWM馬達驅動電路 9-3
9-3 系統核心晶片介紹 9-4
9-3-1 數位訊號處理器TMS320F2812核心簡介 9-4
9-3-1-1 QEP模組簡介 9-5
9-3-2 可程式邏輯陣列(FPGA) 9-6
9-3-2-1 Cyclone EP1C12Q240C6N FPGA 9-7
第十章 實驗結果 10-1
10-1 前言 10-1
10-2 LQR控制器實驗結果 10-1
10-3 回授線性化與極點配置法之控制器實驗結果 10-5
10-4 回授線性化與順滑模態控制器之實驗結果 10-9
10-5 實驗結論 10-12
第十一章 結論與未來展望 11-1
11-1 結論 11-1
11-2 未來展望 11-1

參考文獻
附錄A
附錄B
自述
參考文獻 [1] F. Schaefer and R. H. Cannon, “On The Control of Unstable Mechanical Systems,” In Automatic Remote Control Ⅲ, Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1 (6C. 1-6C. 13), 1967.
[2] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up Control of Inverted Pendulum Using Pseudo-state Feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
[3] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear Control Via Approximate Input-output Linearization: The Ball and Beam Example,” IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 392-398, 1992.
[4] D. Cho, Y. Kato, and D. Spilman, “Sliding Mode and Classical Controllers in Magnetic Levitation Systems,” IEEE Control Systems Magazine, Vol. 13, No. 1, pp. 42-48, 1993.
[5] M. W. Spong, “The Swing Up Control Problem for The Acrobot,” IEEE Control Systems Magazine, Vol. 15, Issue 1, pp. 49-55, 1995.
[6] M. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,” Proceedings of the 34th IEEE Conference on Decision and Control, 1995.
[7] L. E. Ramos, B. C. Toledo, and S. Negretc, “Nonlinear Regulation of A Seesaw Inverted Pendulum,” Proceedings of the 1998 IEEE International Conference on Control Applications, Vol. 2, pp. 1399-1403, 1998.
[8] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, 1995.
[9] D. Hill and P. Moylan, “The Stability of Nonlinear Dissipative Systems,” IEEE Transactions on Automatic Control, Vol. 21, pp. 708-711, 1976.
[10] V. I. Utkin, Sliding Modes in Optimization and Control, Springer-Verlag, New York, 1992.
[11] I. Fantoni and R. Lozano, Nonlinear Control for Underactuated Mechanical Systems, Springer, London, 2001.
[12] J. Hill and W. T. Park, “Real Time Control of A Robot with A Mobile Camera,” Proceedings of 9th ISIR, Washington, D. C., pp. 233-246, 1979.
[13] S. Hutchinson, G. D. Hager, and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Transactions on Robotics and Automation, Vol. 12, pp. 651-670, 1996.
[14] Y. Shirai and H. Inoue, “Guiding A Robot by Visual Feedback in Assembling Tasks,” Pattern Recognition, Vol. 5, pp. 99-108, 1973.
[15] W. J. Wilson, C. W. Hulls, and G. S. Bell, “Relative End-effector Control Using Cartesian Position-based Visual Servoing,” IEEE Transactions on Robotics and Automation, Vol. 12, pp. 684-696, 1996.
[16] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, “Dynamic Sensor-based Control of Robots with Visual Feedback,” IEEE Journal of Robotics and Automation, Vol. 3, No. 5, pp. 404-417, 1987.
[17] K. Hashimoto, Visual Servoing: Real Time Control of Robot Manipulators Based on Visual Sensory Feedback, World Scientific Press: Singapore World Scientic Series in Robotics and Automated systems, Vol. 7, 1993.
[18] S. Rovetta and R. Zunino, “A Multiprocessor-oriented Visual Tracking System,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 4, pp. 842-850, 1999.
[19] 呂俊明,「球與輪系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
[20] 林浩軒,「利用全狀態回授線性化的球與輪系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年七月。
[21] 呂育勝,「利用順滑模態之的球與弧系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年一月。
[22] 廖顯慶,「利用倒階設計方法於球與板系統的追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年七月。
[23] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “One is Enough!,” Proceedings of the 12th Internatonal Symp. on Robotics Research San Francisco, October 12-15, 2005.
[24] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A Dynamically Stable Single-wheeled Mobile Robot with Inverse Mouse-ball Drive,” Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp. 2884-2889, 2006.
[25] R. W. Brockett, “Feedback Invariants for Nonlinear Systems,” Proceedings of IFAC Congress, Helsinki, pp. 1115-1120, 1978.
[26] B. Jakubczyk and W. Respondek, “On Linearization of Control Systems,” Bull. Acad. Pol. Sci. ser. Sci. Math. Astr. Phys, Vol. 28, pp. 517-522, 1980.
[27] L. R. Hunt, R. Su, and G. Meyer, Differential Geometric Control Theory, Birkhauser, Boston, 1983.
[28] A. Isidori, Nonlinear Control Systems, Springer, London, 1995.
[29] H. Nijmeijer and A. V. Vander Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.
[30] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, London, 1995.
[31] M. Spong, P. Corke, and R. Lozano, “Nonlinear Control of The Inertia Wheel Pendulum,” Automatica, Vol. 37, pp. 1845-1851, 2001.
[32] M. A. Aizerman and F. R. Gantmarkher, “On Some Features of Switchings in Nonlinear Control with A Piecewise-smooth Response of The Nonlinear Element,” Avmatika I Telemekhanika, 188, 11, 1957.
[33] V. I. Utkin, “Variable Structure Systems with Sliding Mode,’’ IEEE Transactions on Automatic Control, Vol. 39, pp. 1466-1470, 1977.
[34] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical System, CRC Press, Boca Raton, 1999.
[35] D. Voytsekhovsky and R. M. Hirschorn, “Stabilization of Single-input Nonlinear Systems Using Higher-order Term Compensating Sliding Mode Control,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 468-480, 2008.
[36] F. Zhang, B. R. Fernandez, P. J. Mosterman, and T. Josserand, “Sliding Mode Control and Feedback Linearization for Non-regular Systems,” Proceedings of the 17th World Congress The International Federation of Automatic Control, pp. 14426-14431, 2008.
[37] S. Fuchshumer, K. Schlacher, M. Pölzer, and G. Grabmair, “Flatness Based Control of The System “Ball on the Wheel”,” Proceedings of 6th IFAC Symposium on Nonlinear Control Systems, pp. 227-232, 2004.
[38] M. T. Ho and J. M. Lu, “H∞ PID Controller Design for Lur’e Systems and its Application to A Ball and Wheel Apparatus,” International Journal of Control, Vol. 78, No. 1, pp. 53-64, 2005.
[39] J. L. Martin, A. Zuloaga, C. Cuadrado, J. Lazaro, and U. Bidarte, “Hardware Implementation of Optical Flow Constraint Equation Using FPGAs,” Computer Vision and Image Understanding, Vol. 98, pp. 462-490, 2005.
[40] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGA-based Real-time Optical-flow System,” IEEE Transattions Circuits and Systems for Video Technology, Vol. 16, No. 2, pp. 274-279, 2006.
[41] C. T. Huitzil and M. A. Estrada, “Real-time Image Processing with A Compact FPGA-based Systolic Architecture,” Real-time Imaging, Vol. 10, pp. 177-187, 2004.
[42] J. Batlle, J. Marti, P. Ridao, and J. Amat, “A New FPGA/DSP-based Parallel Architecture for Real-time Image Processing,” Real-time Imaging, Vol. 8, pp. 345-356, 2002.
[43] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年七月。
[44] 林家民,「以視覺伺服為基礎之物體追蹤系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十五年七月。
[45] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年七月。
[46] 朱立銘,「以視覺伺服為基礎之球與板系統追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十八年一月。
[47] 王興森,「倒階控制在球桿系統的應用」,國立成功大學工程科學系碩士論文,民國九十一年七月。
[48] 黃聖財,「以數位訊號處理器為基礎之球與桿系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十三年七月。
[49] J. H. Ginsberg, Advanced Engineering Dynamics, Cambridge University Press, 1995.
[50] H. Baruh, Analytical Dynamics, WCB/McGraw-Hill, 1999.
[51] C. E. Young, Vector and Tensor Analysis, Marcel Dekker, 1993.
[52] J. Koiller and K. Ehlers, “Rubber Rolling Over A Sphere,” Regular and Chaotic Dynamics, Vol. 12, No. 2, pp. 127-152, 2007.
[53] H. Nijmeijer and A. V. Schaft, Nonlinear Dynamic Control Systems, Springer-Verlag, New York, 1990.
[54] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptiveand Robust, Prentice Hall, London, 1995.
[55] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, 1991.
[56] B. C. Kuo, Automatic Control Systems, Prentice-Hall International Editions, Upper Saddle River, NJ, 1997.
[57] IS61LV5128AL 512K 8 High-Speed CMOS Static RAM, ISSI Inc., 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw