進階搜尋


 
系統識別號 U0026-0812200915332829
論文名稱(中文) 虛擬實境訓練對於帕金森病患者伸手動作影響
論文名稱(英文) The effect of virtual reality training on reaching movement in patients with Parkinson’s disease
校院名稱 成功大學
系所名稱(中) 職能治療學系碩博士班
系所名稱(英) Department of Occupational Therapy
學年度 97
學期 2
出版年 98
研究生(中文) 王菁憶
研究生(英文) Ching-yi Wang
學號 t7696105
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 口試委員-郭立杰
指導教授-馬慧英
口試委員-黃文柱
口試委員-許清芳
中文關鍵字 時間線索  動作分析  帕金森病  虛擬實境訓練 
英文關鍵字 Parkinson’s disease  virtual training  external timing cueing  motor analysis 
學科別分類
中文摘要 過去研究顯示時間線索對於帕金森病患者之伸手動作有所助益,而虛擬實境為具高度操控性及穩定性等優點之新興介入工具,因此本研究結合時間線索與虛擬實境工具,希望能深入探討帕金森病患者在虛擬情境下的動作表現與介入後的類化效果。本研究目的有二:(1) 利用客觀運動學數據分析虛擬實境與實際物理環境之伸手動作差異;(2) 探討給予虛擬實境訓練後,實際物理環境下之伸手動作是否能有顯著改善。
共33位帕金森病個案參與本研究,17位個案分配至虛擬實境組,16位個案制控制組。兩組個案皆先進行一次實際軌道與虛擬情境抓球,取得物理情境之前測數據與虛擬情境數據,之後虛擬實境組進行一次虛擬實境接球訓練,控制組利用左手進行翻轉明尼蘇達手部靈巧度測驗之安慰劑訓練,最後兩組進行與第一次完全相同之軌道抓球實驗,並取得後測資料。
本研究發現在一般情形下抓取靜止目標物時,兩情境之伸手動作表現並無顯著差異,但增加活動難度後,虛擬情境相較於物理環境,其成功率較低、手腕運動時間較長且手腕尖峰速度較低。快速的時間線索可誘發帕金森病患者較短之手腕動作時間與較快之手腕尖峰速度,卻會導致過低的接球成功率,而最適合時間線索會因情境有所差異。研究結果顯示虛擬介入可適用於帕金森病患者身上,並能類化至物理環境,可縮短手腕動作時間,增加手腕尖峰速度。
英文摘要 It has been reported that external cueing could improve reaching performance in patients with Parkinson’s disease (PD), but only few studies have focused on external timing cueing. Virtual reality (VR) is a new application with high stability and good operation, and it has been used in many fields in recent years. Therefore, we attempt to provide external timing cueing in virtual context and to explore the effect of VR training on reaching movement in PD. The purposes of this study are (1) to compare reaching performance between the VR and real context, and (2) to examine the effect of VR training in reaching for a real object.
This study included 33 patients with PD (17 subjects in VR group and 16 subjects in control group). All participants reached for the stationary and moving ball in the real context and VR context, and the reaching performance in the real context as the pretest. Then, the VR group received a VR training program and the control group used left hand to perform the Minnesota Manual Dexterity Test (MMDT) as placebo therapy. Finally, all participants reached for the ball in the real context again as the posttest.
Compared between VR context and real context, the motor performance is similar in reaching stationary ball. But after increasing activity difficulty, there were lower success rate, longer wrist movement time, and lower wrist peak velocity in VR context. The faster timing cueing could facilitate shorter wrist movement time and higher wrist peak velocity, but decrease success rate. Therefore there were the most appreciate timing cue for PD subject in VR and real context. The reaching performance in PD would benefit from virtual intervention, and the effect would generate to real context.
論文目次 第一章、緒論 1
第一節、研究動機及目的 1
第二節、研究重要性 5
第二章、文獻回顧 7
第一節、 帕金森病及其動作動作缺失 7
第二節、 帕金森病動作之介入 11
壹、外在線索對帕金森病抓握動作之影響 11
貳、視覺時間線索對帕金森病抓握動作之影響 13
第三節、 虛擬實境系統 15
壹、虛擬實境定義及其形式 15
貳、虛擬實境於醫療復健與研究之應用 17
叁、虛擬實境優點與其限制 20
第四節、總結與實驗問題 22
第三章、研究方法學 23
第一節、研究設計 23
第二節、研究受測者 25
第三節、研究工具 26
壹、臨床篩檢工具 26
貳、軌道設計 29
叁、虛擬實境系統 31
肆、明尼蘇達手部靈巧度測驗(Minnesota Manual Dexterity Test, MMDT) 35
伍、動作分析儀器 36
第四節、研究流程 37
第五節、重要參數定義及資料處理 42
第六節、資料分析與統計方法 44
第四章 前導實驗 45
第一節、電磁場三度空間動作儀器校正 45
第二節、時間限制條件修正 47
第五章、研究結果 49
第一節、基本人口學資料 49
第二節、帕金森病人於不同情境下之動作表現差異性結果 51
壹、靜止球狀態下的動作表現 51
貳、滾動球狀態下的動作表現 53
参、靜止球與滾動球狀態下的表現差異 71
第三節、虛擬介入與安慰劑介入後帕金森病人伸手動作效益差異性結果 79
第六章、討論 87
第一節、帕金森病人於不同情境下之伸手動作表現差異性探討 87
壹、靜止球狀態下的動作表現 87
貳、給予視覺時間線索之不同時間線索比較 90
叁、靜止球與滾動球狀態下的表現差異 93
第二節、虛擬介入與安慰劑介入後帕金森病人伸手動作效益差異性探討 96
第七章、結論 98
第一節、總結 98
第二節、臨床應用及學術發展 100
第三節、本研究限制及未來研究建議 101
誌謝 102
參考文獻 103
英文參考文獻 103
中文參考文獻 111
參考文獻 Alberts, J. L., Saling, M., Adler, C. H., & Stelmach, G. E. (2000). Disruptions in the reach-to-grasp actions of Parkinson's patients. Experimental Brain Research, 134(3), 353-362.
Behrman, A. L., Cauraugh, J. H., & Light, K. E. (2000). Practice as an intervention to improve speeded motor performance and motor learning in Parkinson's disease. Journal of the Neurological Sciences, 174(2), 127-136.
Bertram, C. P., Lemay, M., & Stelmach, G. E. (2005). The effect of Parkinson's disease on the control of multi-segmental coordination. Brain & Cognition, 57(1), 16-20.
Broeren, J., Rydmark, M., Bjorkdahl, A., & Sunnerhagen, K. S. (2007). Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabilitation & Neural Repair, 21(2), 180-189.
Broeren, J., Sunnerhagen, K. S., & Rydmark, M. (2007). A kinematic analysis of a haptic handheld stylus in a virtual environment: a study in healthy subjects. Journal of NeuroEngineering and Rehabilitation, 4, 13.
Bryanton, C., Bosse, J., Brien, M., McLean, J., McCormick, A., & Sveistrup, H. (2006). Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol Behav, 9(2), 123-128.
Burdea, G. C. (2003). Virtual rehabilitation--benefits and challenges. Methods Inf Med, 42(5), 519-523.
Carnahan, H., & McFadyen, B. J. (1996). Visuomotor control when reaching toward and grasping moving targets. Acta Psychologica, 92(1), 17-32.
Chuang, T. Y., Huang, W. S., Chiang, S. C., Tsai, Y. A., Doong, J. L., & Cheng, H. (2002). A virtual reality-based system for hand function analysis. Comput Methods Programs Biomed, 69(3), 189-196.
Crawford, P. A. (2003). The Washington Manual Cardiology Subspecialty Consult: Lippincott Williams & Wilkins.
Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: still more virtual than real. Disability & Rehabilitation, 29(14), 1139-1146; discussion 1147-1152.
Day, J. S., Dumas, G. A., & Murdoch, D. J. (1998). Evaluation of a long-range transmitter for use with a magnetic tracking device in motion analysis. Journal of Biomechanics, 31(10), 957-961.
Day, J. S., Murdoch, D. J., & Dumas, G. A. (2000). Calibration of position and angular data from a magnetic tracking device. Journal of Biomechanics, 33(8), 1039-1045.
Dvorkin, A. Y., Shahar, M., & Weiss, P. L. (2006a). Reaching within Video-Capture Virtual Reality: Using Virtual Reality as a Motor Control Paradigm. Cyberpsychol Behav, 9(2), 133-136.
Dvorkin, A. Y., Shahar, M., & Weiss, P. L. (2006b). Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm. Cyberpsychology & Behavior, 9(2), 133-136.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). " Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 12(3), 189-198.
Ghilardi, M. F., Alberoni, M., Rossi, M., Franceschi, M., Mariani, C., & Fazio, F. (2000). Visual feedback has differential effects on reaching movements in Parkinson's and Alzheimer's disease. Brain Research, 876(1-2), 112-123.
Holden, M. K. (2005). Virtual environments for motor rehabilitation: review. Cyberpsychol Behav, 8(3), 187-211; discussion 212-189.
Howe, T. E., Lovgreen, B., Cody, F. W. J., Ashton, V. J., & Oldham, J. A. (2003). Auditory cues can modify the gait of persons with early-stage Parkinson's disease: a method for enhancing parkinsonian walking performance? Clinical Rehabilitation, 17(4), 363.
Ishikawa, J., Niebur, G. L., Uchiyama, S., Linscheid, R. L., Minami, A., Kaneda, K., et al. (1997). Feasibility of using a magnetic tracking device for measuring carpal kinematics. Journal of Biomechanics, 30(11-12), 1183-1186.
Kaminsky, T. A., Dudgeon, B. J., Billingsley, F. F., Mitchell, P. H., & Weghorst, S. J. (2007). Virtual cues and functional mobility of people with Parkinson's disease: a single-subject pilot study. Journal of Rehabilitation Research & Development, 44(3), 437-448.
Kelly, V. E., Hyngstrom, A. S., Rundle, M. M., & Bastian, A. J. (2002). Interaction of levodopa and cues on voluntary reaching in Parkinson's disease. Movement Disorders, 17, 38-44.
Krebs, H. I., Hogan, N., Hening, W., Adamovich, S. V., & Poizner, H. (2001). Procedural motor learning in Parkinson's disease. Experimental Brain Research, 141(4), 425-437.
Latash, M. L. (1998). Neurophysiological Basis of Movement: Human Kinetics.
Lin, C.-H. J., Sullivan, K. J., Wu, A. D., Kantak, S., & Winstein, C. J. (2007). Effect of task practice order on motor skill learning in adults with Parkinson disease: a pilot study. Physical Therapy, 87(9), 1120-1131.
Lott, A., Bisson, E., Lajoie, Y., McComas, J., & Sveistrup, H. (2003). The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychology & Behavior, 6(5), 477-485.
Ma, H. I., Trombly, C. A., Tickle-Degnen, L., & Wagenaar, R. C. (2004). Effect of one single auditory cue on movement kinematics in patients with Parkinson's disease. American Journal of Physical Medicine & Rehabilitation, 83(7), 530-536.
Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755-766.
Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (2008). Effects of a moving target versus a temporal constraint on reach and grasp in patients with Parkinson's disease. Experimental Neurology, 210(2), 479-488.
Mason, A. H., & Carnahan, H. (1999). Target viewing time and velocity effects on prehension. Experimental Brain Research, 127(1), 83-94.
Messier, J., Adamovich, S., Jack, D., Hening, W., Sage, J., & Poizner, H. (2007). Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging. Experimental Brain Research, 179(3), 457-474.
Milne, A. D., Chess, D. G., Johnson, J. A., & King, G. J. W. (1996). Accuracy of an electromagnetic tracking device: A study of the optimal operating range and metal interference. Journal of Biomechanics, 29(6), 791-793.
Patton, J., Dawe, G., Scharver, C., Mussa-Ivaldi, F., & Kenyon, R. (2006). Robotics and virtual reality: a perfect marriage for motor control research and rehabilitation. Assist Technol, 18(2), 181-195.
Poizner, H., Feldman, A. G., Levin, M. F., Berkinblit, M. B., Hening, W. A., Patel, A., et al. (2000). The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson's patients during reaching movements. Experimental Brain Research, 133(3), 279-292.
Praamstra, P., Stegeman, D. F., Cools, A. R., & Horstink, M. W. (1998). Reliance on external cues for movement initiation in Parkinson's disease. Evidence from movement-related potentials. Brain, 121(1), 167-177.
Purzner, J., Paradiso, G. O., Cunic, D., Saint-Cyr, J. A., Hoque, T., Lozano, A. M., et al. (2007). Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. Journal of Neuroscience, 27(22), 6029-6036.
Rose, F. D., Attree, E. A., Brooks, B. M., Parslow, D. M., Penn, P. R., & Ambihaipahan, N. (2000). Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics, 43(4), 494-511.
Saling, M., Stelmach, G. E., Mescheriakov, S., & Berger, M. (1996). Prehension with trunk assisted reaching. Behavioural Brain Research, 80(1-2), 153-160.
Schenk, T., Baur, B., Steude, U., & Bötzel, K. (2003). Effects of deep brain stimulation on prehensile movements in PD patients are less pronounced when external timing cues are provided. Neuropsychologia, 41, 783-794.
Schenk T., Baur B., Steude U., & K., B. (2003). Effects of deep brain stimulation on prehensile movements in PD patients are less pronounced when external timing cues are provided. Neuropsychologia, 41, 783-794.
Sherman, W. R., & Craig, A. B. (2003). Understanding virtual reality :interface, application, and design. Amsterdam: Morgan Kaufmann Publishers.
Shumway-Cook, A., & Woollacott, M. H. (2006). Motor Control: Translating Research into Clinical Practice: Lippincott Williams & Wilkins.
Siegert, R. J., Harper, D. N., Cameron, F. B., & Abernethy, D. (2002). Self-Initiated Versus Externally Cued Reaction Times in Parkinson's Disease. Journal of Clinical and Experimental Neuropsychology, 24(2), 146-153.
Thomas Schenk, Barbara Baur, Ulrich Steude, & Bötzel, K. (2003). Effects of deep brain stimulation on prehensile movements in PD patients are less pronounced when external timing cues are provided. Neuropsychologia, 41, 783-794.
Trombly, C. A. (1995). Occupational therapy for physical dysfunction: Williams & Wilkins Baltimore.
Viau, A., Feldman, A. G., McFadyen, B. J., & Levin, M. F. (2004). Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroengineering Rehabil, 1(1), 11.
Viau A., Feldman A. G., McFadyen B. J., & F., L. M. (2004). Reaching in reality and virtual reality a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. Journal of NeuroEngineering and Rehabilitation, 1, 11.
Willems, A. M., Nieuwboer, A., Chavret, F., Desloovere, K., Dom, R., Rochester, L., et al. (2006). The use of rhythmic auditory cues to influence gait in patients with Parkinson's disease, the differential effect for freezers and non-freezers, an explorative study. Disability & Rehabilitation, 28(11), 721-728.
郭乃文, 劉秀枝, 王珮芳, & 徐道昌. (1989). 中文版「簡短式智能評估」(MMSE)之簡介 臨床醫學月刊, 23(1), 39-42.
郭乃文, 劉秀枝, 王珮芳, 廖光淦, 甄瑞興, 林恭平, et al. (1988). [簡短式智能評估] 之中文施測與常模建立. 中華民國復健醫學會雜誌, 16, 52-59.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw