進階搜尋


 
系統識別號 U0026-0812200915313671
論文名稱(中文) 利用主動式微流體元件合成奈米粒子之研究
論文名稱(英文) Using Active Microfluidic Components for Synthesizing Nanoparticles
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 翁振勛
研究生(英文) Chen-Hsun Weng
電子信箱 b88501113@gmail.ocm
學號 n9895125
學位類別 博士
語文別 英文
論文頁數 94頁
口試委員 口試委員-饒達仁
口試委員-林哲信
指導教授-李國賓
口試委員-葉晨聖
口試委員-黎煥耀
中文關鍵字 微混合器  微幫浦  微閥門  微流體  微反應器  合成  氧化鐵  金奈米粒子  氧化鐵鎵  空心奈米粒子  微冷凝器 
英文關鍵字 micro-mixer  micro-reactor  micro-pump  microfluidics  iron oxide nanoparticle  synthesis  FeGa2O4  gold nanoparticle  hollow nanosphere  micro-condenser  micro-valve 
學科別分類
中文摘要 本研究成功地結合主動式微流體元件,來合成奈米氧化鐵粒子,六角形奈米金粒子和磁性奈米空心及實心的氧化鐵鎵合金粒子。首先本研究先開發出一新型的微流體晶片包含主動式的雙環微混合器及蠕動式微幫浦,微閥門來操作流體。應用其可以快速傳輸及混合的功能達到合成奈米氧化鐵粒子的效果。與傳統的合成方法比較起來,其合成之奈米粒子有較佳的分散性及粒徑均勻性的效果。第二部份,本研究應用了微加熱器於微流體晶片系統中,並開發出一單環式的微混合器來控制合成的奈米金粒子,在不添加任何保護劑之作用下,利用微流體技術可以精密控制流體混合及加熱之特色,合成出六角形的奈米金粒子。並可以觀察出六角形的奈米金粒子形成過程中是由更小的金種子聚集而成。第三部份,本研究克服須在高溫下(145 ℃ )才能合成的磁性奈米氧化鐵鎵合金粒子。設計出兩種型態的微冷凝器,一為主動式冷凝器,另一為被動式冷凝器。利用微泡模版法可以合成出奈米空心的粒子,而當沒有微泡產生時則可以合成出實心的奈米粒子。利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)製作成的微混合器,微幫浦,微冷擬器和微閥門並整合而成微流體反應晶片。最後本研究成功的提出一個快速及簡便的微流體控制方法來合成不同材料的奈米粒子並可以改善其均勻性,控制粒徑的大小且可以合成出不同形狀之奈米粒子。我們期待利用微流體元件來控制合成的奈米粒子之形狀、大小與均勻性將帶給生物醫學領域更多應用及重大貢獻。
英文摘要 This study reports a microfluidic system for synthesis magnetic iron oxide nanoparticles (Fe3O4), hexagonal gold (Au), magnetic hollow and solid Fe/Ga-based oxide nanoparticles. First, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micro-mixer, two micro-pumps, and a micro-valve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 minutes). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.
Second, a new microfluidic reaction system capable of mixing, transporting and reacting is developed for synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is integrated a micro-mixer, micro-pumps, a micro-valve, micro-heaters, and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that the precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for synthesis of functional nanoparticles for future biomedical applications.
Third, it is a new approach to synthesize hollow nanospheres in a microfluidic system by using air bubbles as templates. A new microfluidic system which integrates a micro-mixer, a micro-condenser channel, micro-valves, a micro-heater, and a micro temperature sensor, to form an automatic micro-reactor, is used to generate air bubbles that assist in the synthesis of hollow Fe/Ga-based oxide nanospheres. Experimental data show that Fe/Ga-based oxide nanoparticles with a diameter of 157 ± 26nm can be successfully synthesized. The formation mechanism is that the seed nanoparticles are attaching themselves onto the bubbles to form a solid shell. The magnetic properties of the hollow Fe/Ga-based oxide nanospheres are also measured. This may be a promising platform to synthesize hollow nanoparticles for drug delivery applications.
Fourth, using the passive micro-condenser to synthesize the solid-core nanospheres can be observed in the microfluidic system without the bubbles. This method offers a way to synthesis two metal elements in the nanoparticles, which can be very useful in the deterministic synthesis of nanostructured precursors for making chemical composition and phase specific nanocomposites. The growth process of alloy nanoparticle by a thermal aqueous approach was studied by taking samples out of the micro-reactor at different volumes to investigate the intermediate product structures. A different growth mechanism from other known mechanisms in the literature is proposed. From this research, we found that the alloy nanoparticle has magnetic. So the magnetic nanoparticle could be applied to bio-application.
Key components including micro-reactor, a PDMS (Polydimethylsiloxane)-based microchannel, a peristaltic micro-pump, micro-valves, micro-condenser and micro-heater were integrated to form a new microfluidic system for synthesis nanoparticles utilizing MEMS (micro-electro-mechanical-systems) technologies. In this study, the device provided a convenient way to synthesize the different types of nanoparticles.
論文目次 Table of Contents
Abstract…………………………………………………………………………… I
中文摘要……………………………………………………………………………IV
Table of Contents……………………………………………………………………V
List of Tables…………………………………………………………………… VIII
List of Figures……………………………………………………………………VIII
Nomenclature…………………………………………………………………… XII

Chapter 1 : Introduction 1
1. 1 MEMS and Lab-on-a-chip technology 1
1. 2 Synthesis technology 2
1. 3 Microfluidic Reactors for synthesis 3
1. 4 Literature Survey 5
1.4. 1 The synthesis for gold nanoparticle 5
1.4. 2 The synthesis for magnetic Fe3O4 nanoparticle 6
1.4. 3 The synthesis for alloy fega2o4 nanoparticles 8
1. 5 Motivation and Objectives 9
Chapter 2 : Design and Theory 11
2. 1 The Microfluidic Control System 11
2.1. 1 The principle of micro-pump and micro-valve 11
2.1. 2 The design of microchannel 12
2.1. 3 The design of micro-mixer 12
2.1. 4 The design of micro-heater and temperature micro-sensor 13
2.1. 5 The design of micro-condenser 13
2. 2 Unique Features for Controlled Synthesis of Nanomaterials 14
2.2. 1 The mixing efficient 14
2.2. 2 The Separation of Nucleation and Growth Stages 15
2.2. 3 Controlling the kinetics for nanoparticles formation 16
Chapter 3 : Synthesis of iron oxide nanoparticle in micro-reactor 19
3. 1 Design of micro-reactor 19
3. 2 Experimental setup 21
3. 3 Preparation of iron oxide nanoparticles 21
3. 4 Results and discussion 22
3.4. 1 Characterization of the microfluidic system 22
3.4. 2 Synthesis of iron oxide nanoparticles 25
3. 5 Summary 28
Chapter 4 : Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system 36
4. 1 The design of microfluidic chip 36
4. 2 Experimental setup 37
4. 3 Preparation of gold nanoparticles 37
4. 4 Results and discussion 37
4.4. 1 Performance of the microfluidic 37
4.4. 2 The formation of gold nanoparticles 39
4. 5 Summary 43
Chapter 5 Synthesis of fega2o4 nanospheres in micro-device 52
5. 1 Synthesis of hollow fega2o4 nanospheres 52
5.1. 1 Design of device 53
5.1. 2 Experimental procedure 55
5.1. 3 Results and discussion 56
5.1. 4 Summary 60
5. 2 Synthesis of solid fega2o4 nanoparticles 61
5.2. 1 Design of microfluidic chip 61
5.2. 2 The experimental setup 62
5.2. 3 Preparation of alloy nanoparticles 62
5.2. 4 Results and discussion 63
5.2. 5 Summary 63
Chapter 6 Conclusion 78
Chapter 7 Reference 80
Chapter 8 Biography 91
Chapter 9 Publication 92
參考文獻 [1] Hsu, T., MEMS and Microsystems: Design and Manufacture. (McGraw-Hill Science, Engineering & Mathematics, 2001).
[2] Gardner, J., Varadan, V., & Awadelkarim, O., Microsensors, MEMS, and Smart Devices. (Wiley, 2001).
[3] Lyshevski, S., MEMS and NEMS: Systems, Devices, and Structures. (CRC Press, 2002).
[4] Reyes, D., Iossifidis, D., Auroux, P., & Manz, A., Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry 74 (12), 2623-2636 (2002).
[5] Auroux, P., Iossifidis, D., Reyes, D., & Manz, A., Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry 74 (12), 2637-2652 (2002).
[6] Song, Y., Kumar, C., & Hormes, J., Synthesis of Palladium Nanoparticles Using A Continuous Flow Polymeric Micro Reactor. Journal of Nanoscience and Nanotechnology 4 (7), 788-793 (2004).
[7] LH, Q., PENG, Z., & PENG, X., Alternative Routes Toward High Quality Cdse Nanocrystals. Nano Letter 1 (6), 333-337 (2001).
[8] Cushing, B., Kolesnichenko, V., & O Connor, C., Recent Advances in The Liquid-Phase Syntheses Of Inorganic Nanoparticles. Chemical reviews 104, 3893-3946 (2004).
[9] Lin, X., Sorensen, C., Klabunde, K., & Hadjipanayis, G., Temperature Dependence Of Morphology and Magnetic Properties of Cobalt Nanoparticles Prepared by An Inverse Micelle Technique. Langmuir 14 (25), 7140-7146 (1998).
[10] Diana, F., Lee, S., Petroff, P., & Kramer, E., Fabrication of Hcp-Co Nanocrystals Via Rapid Pyrolysis in Inverse Ps-B-Pvp Micelles And Thermal Annealing. Nano Letter 3 (7), 891-895 (2003).
[11] Ram, S., Self-Confined Dimension of Thermodynamic Stability in Co-Nanoparticles in Fcc And Bcc Allotropes with A Thin Amorphous Al2O3 Surface Layer. Acta Materialia 49 (12), 2297-2307 (2001).
[12] Puntes, V., Krishnan, K., & Alivisatos, P., Synthesis, Self-Assembly, and Magnetic Behavior of A Two-Dimensional Superlattice of Single-Crystal ε-Co Nanoparticles. Applied Physics Letters 78, 2187 (2001).
[13] Puntes, V., Krishnan, K., & Alivisatos, A. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science 291, 2115-2117 (2001).
[14] Apsel, S., Emmert, J., Deng, J., & Bloomfield, L., Surface-Enhanced Magnetism in Nickel Clusters. Physical review letters 76 (9), 1441-1444 (1996).
[15] Jensen, T., Malinsky, M., Haynes, C., & Van Duyne, R., Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. Journal of Physical Chemistry B 104 (45), 10549-10556 (2000).
[16] Huang, J., Wu, Y., & Ye, H., Phase Transformation of Cobalt Induced By Ball Milling. Applied Physics Letters 66, 308 (1995).
[17] Shi, J., Gider, S., Babcock, K., & Awschalom, D., Magnetic Clusters In Molecular Beams, Metals, And Semiconductors. Science 271 (5251), 937 (1996).
[18] Park, I. Et al., Magnetic Properties and Microstructure Of Cobalt Nanoparticles In A Polymer Film. Solid State Communications 126 (7), 385-389 (2003).
[19] Hessel, V., Hardt, S., & Lowe, H., Chemical micro process engineering: fundamentals, modelling and reactions. (Wiley-Vch Verlag gmbh&Co.kgaa, 2004).
[20] Petit, C., Taleb, A., & Pileni, M., Cobalt nanosized particles organized in a 2D superlattice: Synthesis, characterization, and magnetic properties. J. Phys. Chem. B 103 (11), 1805-1810 (1999).
[21] Kumbhar, A., Spinu, L., Agnoli, F., Wang, K.-Y., Zhou, W., O'Connor, C. J., Magnetic Properties of Cobalt and Cobalt–Platinum Alloy Nanoparticles Synthesized Via Microemulsion. IEEE Transactions on Magnrtics 37 (4) (2001).
[22] Watts, P., Haswell, S., & Pombo-Villar, E., Electrochemical effects related to synthesis in micro reactors operating under electrokinetic flow. Chemical Engineering Journal 101 (1-3), 237-240 (2004).
[23] Knitter, R. & Dietrich, T., Microfabrication in Ceramics and Glass. Advanced Micro and nanosystems 5, 353 (2006).
[24] Ehrfeld, W., Hessel, V., & Lowe, H., Microreactors: New technology for modern chemistry. (Wiley-VCH, 2000).
[25] Buscaglia, M. T., Buscaglia, V., Viviani, M., Testino, A.,Nanni, P., Bowen, P.,Donnet, M. , Jongen, N., Schenk, R., Hofmann, C., Hessel, V., Schonfeld, F., Aqueous Synthesis of Submicron And Nanometre batio3 Particles In A Segmented Flow Tubular Reactor (SFTR). Adv. Sci. Technol. 30, 535-542 (2002).
[26] Bessoth, F., demello, A., & Manz, A., Microstructure for efficient continuous flow mixing. Analytical Communications 36 (6), 213-215 (1999).
[27] Hung, L., Choi K.M., Tseng W.Y., Tan Y.C., Shea K.J., Lee A.P., Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for cds nanoparticle synthesis. Lab on a Chip 6 (2), 174-178 (2006).
[28] Shestopalov, I., Tice, J., & Ismagilov, R., Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab on a Chip 4 (4), 316-321 (2004).
[29] Chan, E.M., Alivisatos, A.P., & Mathies, R.A., High-Temperature Microfluidic Synthesis of cdse Nanocrystals in Nanoliter Droplets. Journal of the American Chemical Society 127 (40), 13854-13861 (2005).
[30] Tice, J., Song, H., Lyon, A., & Ismagilov, R., Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19 (22), 9127-9133 (2003).
[31] Bentley, B., Leal, L., An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. Journal of Fluid Mechanics Digital Archive 167, 241-283 (2006).
[32] Sugiura, S., Nakajima, M., Iwamoto, S., & Seki, M., Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17 (18), 5562-5566 (2001).
[33] Wang, H., Nakamura, H., Uehara, M., Miyazaki, M., & Maeda, H., Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chemical Communications 2002 (14), 1462-1463 (2002).
[34] Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M., & Tsuji, T., Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry-A European Journal 11 (2), 440-452 (2005).
[35] Chen, S. & Carroll, D., Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2 (9), 1003-1007 (2002).
[36] Jin, R. Et al., Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425 (6957), 487-490 (2003).
[37] Wagner, J., Kirner, T., Mayer, G., Albert, J., & Kohler, J., Generation of metal nanoparticles in a microchannel reactor. Chemical Engineering Journal 101 (1-3), 251-260 (2004).
[38] Sun, Y., Mayers, B., & Xia, Y., Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 3 (5), 675-679 (2003).
[39] Shankar, S. Et al., Biological synthesis of triangular gold nanoprisms. Nature materials 3 (7), 482-488 (2004).
[40] Hao, E., Kelly, K., Hupp, J., & Schatz, G., Synthesis of silver nanodisks using polystyrene mesospheres as templates. Journal-American Chemical Society 124 (51), 15182-15183 (2002).
[41] Sun, Y. & Xia, Y., Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176-2179 (2002).
[42] Kim, J., Cha, S., Shin, K., Jho, J., & Li, J., Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions. Adv. Mater 16, 459–464 (2004).
[43] Shao, Y., Jin, Y., & Dong, S., Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications 2004 (9), 1104-1105 (2004).
[44] Pasricha, R., Singh, A., & Sastry, M., Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air–water interface. Journal of Colloid and Interface Science 333, 380-388 (2009).
[45] Tsuji M., Miyamae N., Hashimoto M., Nishio M., Hikino S., Ishigami N., Tanaka I., Shape and size controlled synthesis of gold nanocrystals using oxidative etching by AuCl4- And Cl- Anions in microwave-polyol process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 302 (1-3), 587-598 (2007).
[46] Kanaras, A., Sonnichsen, C., Liu, H., & Alivisatos, A., Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 5 (11), 2164-2167 (2005).
[47] Nishibiraki, H., Kuroda, C. S., Maeda, M., Matsushita, N., Abe, M., Handa, H., Preparation of medical magnetic nanobeads with ferrite particles encapsulated in a polyglycidyl methacrylate (GMA) for bioscreening. Journal of Applied Physics 97, 10Q919 (2005).
[48] Karhanek, M., Kemp, J., Pourmand, N., Davis, R., & Webb, C., Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett 5 (2), 403-407 (2005).
[49] Drake, P.,, Cho H.J., Shih P.S., Kao C.H., Lee K.F., Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. Journal of Materials Chemistry 17 (46), 4914-4918 (2007).
[50] Bulte, J. Et al., Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature biotechnology 19 (12), 1141-1147 (2001).
[51] Senyei, A., Widder, K., & Czerlinski, G., Magnetic guidance of drug?Carrying microspheres. Journal of Applied Physics 49, 3578 (1978).
[52] Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., & von Rechenberg, B., Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 293 (1), 483-496 (2005).
[53] Wang, S., Shi X.Y., Antwerp M., Cao Z.Y., Swanson S.D., Bi X.D., Baker J.R.., Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells. Advanced Functional Materials 17 (16), 3043 (2007).
[54] Gupta, A. & Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26 (18), 3995-4021 (2005).
[55] Lan, Q., Liu C.,Yang F., Liu S., Xu J., Sun D., Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in ph-responsive Pickering emulsions. Journal of Colloid And Interface Science 310 (1), 260-269 (2007).
[56] Cheng F.Y., Su C.H., Yang Y.S., Yeh C.S., Tsai C.Y., Wu C.L., Wu M.T., D.B. Shieh Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26 (7), 729-738 (2005).
[57] Huh, Y., Jun Y.W., Song H.T., Kim S., Choi J.S., Lee J.H., Yoon S., Kim K.S., Shin J.S., Suh J.S., Cheon J., In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. Journal of the American Chemical Society 127 (35), 12387-12391 (2005).
[58] Chen, G. X., Hong M., Lan H., B., Wang Z. B., Lu Y. F., and T. C. Chong, A convenient way to prepare magnetic colloids by direct Nd: YAG laser ablation. Applied Surface Science 228 (1-4), 169-175 (2004).
[59] Shchukin, D., Radtchenko, I., & Sukhorukov, G., Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Materials Letters 57 (11), 1743-1747 (2003).
[60] Iida, H., Takayanagi, K., Nakanishi, T., & Osaka, T., Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid And Interface Science 314 (1), 274-280 (2007).
[61] Guo, Q., Teng, X., Rahman, S., & Yang, H., Patterned Langmuir Blodgett Films of Monodisperse Nanoparticles of Iron Oxide Using Soft Lithography. J. Am. Chem. Soc 125 (3), 630-631 (2003).
[62] Kraitchman, D.; Heldman A. W., Atalar E., In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Am. Heart. Assoc. 107, 2290-2293 (2003).
[63] Shieh D.B., Cheng F.Y., Su C.H., Yeh C.S., Wu M.T., Wu Y.N., Tsai C.Y., Wu C.L., Chen D.H., Chou C.H., Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials 26 (34), 7183-7191 (2005).
[64] Clark, A.E., Hathaway, K. B., Wun-Fogle, M., Restorff, J. B., Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. Journal of Applied Physics 93 (10), 8621-8623 (2003).
[65] Lee J.H., Huh Y.M., Jun Y.W., Seo J.W., Jang J.T., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S., Cheon J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature medicine 13 (1), 95-99 (2006).
[66] Leccabue, F., Growth, thermodynamic and magneto-structural study of fega2o4 single crystals. Journal of Crystal Growth 112 (4), 644-650 (1991).
[67] Yang, S.-H., Hsueh, T.-J., & Chang, S.-J., Effect of zno buffer layer on the cathodoluminescence of znga2o4/zno phosphor screen for FED. Journal of Crystal Growth 287 (1), 194-198 (2006).
[68] Huang, C., Yeh, C., & Ho, C., Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. J. Phys. Chem. B 108 (16), 4940-4945 (2004).
[69] Huang, C.-C., Su, C.-H., Liao, M.-Y., & Yeh, C.-S., Magneto-optical fega2o4 nanoparticles as dual-modality high contrast efficacy T2 imaging and cathodoluminescent agents. Physical Chemistry Chemical Physics, (2009).
[70] Tudos, A., Besselink, G., & Schasfoort, R., Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip 1 (2), 83-95 (2001).
[71] Lin, C., Lee, G., Wang, C., Lee, H., Liao, W. And Chou, T., Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices. Biosensors and Bioelectronics 21 (8), 1468-1475 (2006).
[72] Liao, C., Lee, G., Liu, H., Hsieh, T., & Luo, C., Miniature RT-PCR system for diagnosis of RNA-based viruses. Nucleic Acids Research 33 (18), E156 (2005).
[73] Pettigrew, K., Kirshberg, J., Yerkes, K., Trebotich, D. And Liepmann, D., Performance of a MEMS based micro capillary pumped loop for chip-level temperature control. MEMS, 427-430. (2001).
[74] Welty, S. And Cueva, F., Energy Efficient Freezer Installation Using Natural Working Fluids and a Free Piston Stirling Cooler.CIAR, 199-208. (2001).
[75] Kirshberg, J., Yerkes, K. And Liepmann, D., Micro-cooler for chip-level temperature control. Society of Automotive Engineers 341, 233-238 (1999).
[76] Lee, W. Et al., Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system. Biomedical Microdevices 11 (1), 161-171 (2009).
[77] Jackman, R., Floyd, T., Ghodssi, R., Schmidt, M., & Jensen, K., Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. Journal of Micromechanics and microengineering 11 (3), 263-269 (2001).
[78] Xu, Y., Bessoth, F., Eijkel, J., & Manz, A., On-line monitoring of chromium (III) using a fast micromachined mixer/reactor and chemiluminescence detection. The Analyst 125 (4), 677-683 (2000).
[79] Funfak, A., Brosing, A., Brand, M., & Kohler, J., Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab on a Chip 7 (9), 1132-1138 (2007).
[80] Shalom, D. Et al., Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Materials Letters 61 (4-5), 1146-1150 (2007).
[81] Wang, C., Chen, D., & Huang, T., Synthesis of palladium nanoparticles in water-in-oil microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 189 (1-3), 145-154 (2001).
[82] Lamer, V. & Dinegar, R., Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society 72 (11), 4847-4854 (1950).
[83] Demello, J. & demello, A., Microscale reactors: nanoscale products. Lab on a Chip 4 (2), 11N (2004).
[84] Ohko, Y., Setani, M., Sakata, T., Mori, H., & Yoneyama, H., Preparation of Monodisperse zns Nanoparticles by Size Selective Photocorrosion. Chemistry Letters 28 (7), 663-664 (1999).
[85] Sounart T.L., Safier P.A., Voigt J.A., Hoyt J., Tallant D.R., Matzke C.M., Michalske T.A., Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab on a Chip 7 (7), 908-915 (2007).
[86] Sakamoto, N., Harada, M., & Hashimoto, T., In Situ and Time-Resolved SAXS Studies of Pd Nanoparticle Formation in a Template of Block Copolymer Microdomain Structures. Macromolecules 39 (3), 1116-1124 (2006).
[87] Song, Y.J.,Modrow H., Henry L.L., Saw C.K., Doomes E.E. Palshin V. Hormes J.,Kumar, C.S.S.R., Microfluidic synthesis of cobalt nanoparticles. Chem. Mater 18 (12), 2817-2827 (2006).
[88] Mu, G., Chen, N., Pan, X., Yang, K., & Gu, M., Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites. Applied Physics Letters 91, 043110 (2007).
[89] Fowler, C.E., Khushalani, D., & Mann, S., Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications (19), 2028-2029 (2001).
[90] Lu, Y. Et al., Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398 (6724), 223-226 (1999).
[91] Emmerich, O., Hugenberg, Schmidt, M. N., Sheiko, S.S., Baumann, F., Deubzer, B.,
Weis, J., Ebenhoch, J., Molecular Boxes Based on Hollow Organosilicon Micronetworks. Advanced Materials 11 (15), 1299-1303 (1999).
[92] Graf, C. & van Blaaderen, A., Metallodielectric Colloidal Core-Shell Particles for Photonic Applications. Langmuir 18 (2), 524-534 (2002).
[93] Leccabue F., Panizzieri R., Watts B., Fiorani E., Agostinelli D., Testa E., A., Paparazzo E., Growth, thermodynamic and magneto-structural study of FeGa2O4 single crystals. Journal of Crystal Growth 112 (4), 644-650 (1991).
[94] Ghose, J., Hallam, G., & Read, D., A magnetic study of fega2o4. Journal of Physics C: Solid State Physics 10, 1051-1057 (1977).
[95] Ghose, J., Effect of Fe3+ incorporation on the Fe2+ clustering in fega2o4. Journal of Solid State Chemistry 79 (2), 189-193 (1989).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw