進階搜尋


 
系統識別號 U0026-0812200915290562
論文名稱(中文) 結合低價單頻GPS接收儀與虛擬參考站定位精度之研究
論文名稱(英文) Precision Analyses on Position Acquired from the Integration of Low-Cost L1 GPS Receiver and Virtual Reference Station
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 97
學期 2
出版年 98
研究生(中文) 陳鶴欽
研究生(英文) He-Chin Chen
電子信箱 23012@mail.nlsc.gov.tw
學號 l4891105
學位類別 博士
語文別 中文
論文頁數 118頁
口試委員 口試委員-楊名
口試委員-鄭凱謙
口試委員-江凱偉
指導教授-饒瑞鈞
召集委員-劉啟清
中文關鍵字 全球定位系統  低價單頻GPS接收儀  虛擬參考站  零基線 
英文關鍵字 Low-cost L1 GPS Receiver  GPS  Zero Baseline  Virtual Reference Station 
學科別分類
中文摘要 GPS衛星測量定位已被廣泛應用在各領域,提供各項空間定位服務及其他如電離層誤差等額外空間資訊,對於改善民眾生活、政府公共工程建設及科學發展助益頗大。但隨著GPS系統逐漸老化及愈來愈多更高精度定位需求,美國自2000年開始提出GPS現代化計畫,俄羅斯GLONASS系統也提出相同策略,並計畫自2013年起更改展頻格式為碼分多址模式,與其他定位系統相容。歐盟於2006年發射第一顆Galileo衛星,目前已發射2顆衛星,進入衛星驗證程序,中國也宣佈投入經費發展北斗二代衛星系統(Compass),未來統合各衛星定位系統簡稱為全球導航衛星系統(GNSS),將提供更有效能的定位資訊及能力。臺灣目前辦理衛星測量作業,多數使用測量型雙頻GPS衛星接收儀,價格較為昂貴,本研究嘗試使用導航型低成本單頻L1 GPS接收儀辦理測量衛星,並結合台灣地區已建構之e-GPS即時動態定位系統,使用虛擬參考站技術,辦理各項作業測試,成果顯示,使用導航型低成本單頻在零基線測試中,約96%基線成果差值小於1 mm,與一般雙頻儀器測試相當,顯示觀測成果品質穩定可靠。在1小時靜態基線測試中,在7 km範圍以內,72%基線可計算出固定解,符合一般加密控制測量作業需求。搭配e-GPS系統產製虛擬參考站資料在靜態基線測試中,在10 km測試中, 75%基線可計算出固定解,最大較差在3 cm範圍內,推估可提升基線距離效益約30%。使用單頻結合虛擬參考站觀測資料,在15m動態成果計算中,可達90%解算成功率,水平定位精度約1cm。目前已有導航型晶片製造廠投入GPS及Galileo的研發生產,未來低成本的GNSS L1衛星接收儀將是可令人期待,在價格優勢及降低成本考量下,將提供辦理加密控制測量作業或辦理易敏感地區,諸如危險山坡地、土石流河道或火山口等地區的監測作業,進行即時監控,以達預警防災減災之效。
英文摘要 GPS positioning has been widely applied in various fields, and provides all kinds of spatial positioning services and other information such as ionospheric delay which benefits the improvement of living, government public construction and scientific development. However, under the gradually out-of-date GPS systems and increasingly demand for high precision positioning, the United States have addressed Modernized GPS strategy since 2000. The Russian GLONASS system applies the spread spectrum format into Code Division Multiple Access (CDMA) mode, which is compatible with other positioning systems. The European Union (EU) has launched the primary Galileo satellite in 2006 and has launched two satellites at present under In-Orbit Validation (IOV) procedures. China has also announced to invest fund in developing the second generation Beidou navigation satellite system (Compass). The integration of various satellite positioning systems contracted as Global Navigation Satellite System (GNSS) will offer more efficient positioning information and capability in the very near future. At present, applications of GPS survey works utilize high cost dual frequency GPS receivers in Taiwan; therefore our research attempts to replace it with low cost navigation type receiver. We use single frequency receiver (L1 GPS) and combine the network of e–GPS RTK positioning system in Taiwan as virtual reference station. The results of zero baseline using L1 GPS receiver shows that approximately 96% baseline discrepancies are less then 1 mm for the baseline length. It is similar to the obtained test results of general dual frequency GPS receiver. The result reveals the stable and reliable quality of observation achievement. During the 1 hour static baseline test, within 7 km range, 72% of baseline reached fix solutions, which conform to general densified control point survey demand. When collocate with e-GPS system producing VRS data under static baseline test, 75% baselines are able to calculate fixed solutions in 10 km range and the maximum error is less than 3 cm. The results of combining VRS improve the baseline distance benefit of about 30%. When integrate the Single Frequency GPS with VRS observation data in 15m dynamic calculation, the obtained result can reach 90% success rate, horizontal positioning standard error of around 1cm. Nowadays, there are several L1 GPS and Galileo chips in the markets. We can expect the low cost GNSS L1 receivers with a competitive price. Their potential applications include the densification of a nation’s control network, and monitoring of hazardous area such as mountainside, mudflows, landslides, or volcano areas.
論文目次 摘 要 Ⅰ
ABSTRACT Ⅱ
誌 謝 Ⅳ
目 錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅸ

第一章 緒論 1
1.1 研究動機與目的 2
1.2 問題背景與現況 3
1.3 論文架構與章節 6
第二章 GNSS發展現況及趨勢 8
2.1 GPS現代化 9
2.2 GLONASS 10
2.3 Galileo 12
2.4 Compass/Beidou 13
2.5 未來的GNSS 15
第三章 GPS測量理論與實踐 22
3.1 GPS定位原理 22
3.2 GPS測量方法 23
3.3 GPS辦理控制測量誤差 26
3.4 台灣地區控制點坐標系統現況 29
3.4.1 一二等衛星控制點 30
3.4.2 三四等衛星控制點 32
3.4.3 運用快速靜態辦理四等控制測量可行性 33
第四章 虛擬參考站建置及精度分析 37
4.1 基本定位原理 38
4.2 VRS RTK定位技術優點 39
4.2.1 VRS RTK系統規劃 43
4.2.2 GPSnet定位系統軟體 46
4.3 區域性定位服務網 46
4.4 系統精度 48
第五章 單頻L1衛星接收儀精度分析 50
5.1 GPS介面製作 51
5.1.1 硬體介面 51
5.1.2 軟體介面 53
5.1.3 資料蒐集 55
5.2 成果分析 60
5.2.1 零基線測試 60
5.2.2 靜態基線距離測試 64
5.2.3 短時間短距離靜態基線測試 66
5.2.4 短距離動態測試 68
5.2.5 結合VRS靜態基線測試 75
5.2.6 結合VRS與低價單頻短距離動態測試 83
5.3 未來GNSS L1接收儀模擬性能分析 85
第六章 結論與建議 89
參考文獻 91
附錄一 三等衛星控制測量作業規定與精度需求表 95
附錄二 Ublox GPS指令 96
附錄三 使用網路RTK系統及基準站統計表 99

個人簡歷 113
參考文獻 內政部,內政部90年5月2日台內地字第9060856號令,台北,2001。
內政部國土測繪中心,全球導航衛星系統(GNSS)資料聯合處理技術期末報告(96年度),台中,2007。
中華人民共和國國家測繪局,全球定位系統(GPS)測量型接收機檢定規程,中華人民共和國測繪行業標準,1995。
王敏雄,e-GPS定位系統應用於基本控制測量作業之研究,內政部國土測繪中心自行研究報告,台中,2007。
李俊鋒,北斗衛星導航定位系統與全球定位系統之比較分析,北京測繪,2007年第1期,第51-53頁,2007。
吳敏達,GPS單頻載波相位以序貫演算法進行即時靜態定位之研究,成功大學碩士論文,台南,1995。
高洪民、費元春,GPS接收機射頻前端電路原理與設計,電子技術用,2005年第2期,第55-58頁,2005。
黃文祥,REV-2000 GPS單頻模組相對定位精度分析,成功大學碩士論文,台南,2004。
飛揚科技,飛揚科技網頁http://www.gpsbaby.com/,,最近查閱 2008-3-22。
張嘉強,歐盟伽利略(Galileo)導航衛星系統介紹,地籍測量,第廿三卷第1期,第64-80頁,2004。
馮倩君,以多參考站為基礎之GPS即時動態定位演算法發展,成功大學碩士論文,台南,2003。
楊名,公分級GPS衛星即時動態定位系統,中國測量工程,第39卷,第四期,第1 -18頁,1997。
過靜君、季如進、商瑞斌、張遠智,GPS天線相位中心偏移影響及接收儀零基線的測試,測繪通報,1993年第1期,第19-20頁,1993。
劉美利,應用零基線原理檢驗接收儀內部雜訊之研究,交通大學碩士論文,新竹,2003。
盧金胡,動態GPS衛星測量之載波相位未定值搜尋演算法,成功大學碩士論文,台南,1994。
陳鶴欽、吳萬順、梁旭文、林世賢、陳俊廷,應用GPS快速靜態測量方式辦理四等控制測量作業規範之研究,地籍測量,第24卷第2期,第19-40頁,2004。
陳鶴欽、林世賢、曾清凉、劉至忠、吳萬順,台灣地區虛擬電子基準站最佳間距之研究,第23屆測量學術及應用研討會,中興大學,台中,第473-485頁,2004。
陳鶴欽、饒瑞鈞、王敏雄、劉正倫,結合低價單頻GPS接收儀與虛擬動態基準站定位精度之研究,中正嶺學報(accepted),2009。

謝世杰,GPS接收機性能之我見,北京測繪,2000年第4期,第36-40頁,2000。
聯勤總部測量署,台灣地區基本控制點檢測工作總結報告,聯勤總部測量署印製,1980。
蘇宣翰,提昇單頻GPS接收儀觀測量定位精度之研究,交通大學碩士論文,新竹,1996。
Blewitt, G., Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km, Journal of Geophysical Research, 94, 1187-1203, 1989.
Brinker, R.C. and Minnick, R., The Surveying Handbook Second Eition, Chapman & Hall, New York, 1995.
Chen, H.C., Huang, Y.S., Chiang, K.W., Yang, M., Rau, R.J., The performance comparison between GPS and BeiDou-2/Compass: A perspective from Asia, Journal of the Chinese Institute of Engineers, Vol. 32, No. 5, 679-689, 2009.
Chen, H.Y., Rizos, C., Han, S., From simulation to implementation: low-cost densification of permanent GPS networks in support of geodetic applications, Journal of Geodesy, 75, 515-526, 2001.
Chiang, K. W., Yang, M., Tsai, M. L., Chang, Y. Y., and Chu, C. K., The Technical Benefits of Future GNSS for Taiwan, Proceedings of IAIN/GNSS2006, Jeju, Korea, 3-8, 2006.
Frei, E. and Beutler, G., Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach : the Alternative to Kinematic Positioning, Proceedings of second International Symposium on Precise Positioning with Global Positioning System, 1196-1216, 1990.
FSARF, GLONASS: Status and Perspectives: Munich Satellite Navigation Summit, Munich, Federal Space Agency for the Russian Federation, Russia, 2005.
Goad, C., and Yang, M., A new approach to precision airborne GPS positioning for Photogrammetry, Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, 1067-1077, 1997.
Han, S., Carrier Phase-Based Long-Range GPS Kinematic Positioning, Ph.D. Dissertation, Dept. of Geomatic Eng., University of New South Wales Sydney NSW 2052, Australia, 1997.
Han, S. and Rizon, C., Comparing GPS Ambiguity Resolution Techniques, GPS World, Vol. 8, 54-60, 1997.
Hatch, R., Instantaneous Ambiguity Resolution, Proceedings of IAG International Symposium No.107 on Kinematic System in Geodesy, Surveying and Remote Sensing, 299-308, 1990.
Hein, G. W., Godet, J. I., Jean-Luc, M., Jean-Christophe, E., Philippe, L., Rafael, K., and Pratt, T., Status of Galileo frequency & signal design, Proc. US Institute of Navigation (ION) GPS 2002, Oregon Convention Center, Portland, Oregon, 24-27, 2002.
Ji, S., Chen, W., Zhao, C., Ding, X., and Chen, Y., Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods, GPS Solutions, Vol. 11, No. 4, 259-268, 2007.
Kaplan, E., Hegarty, C., Understanding GPS: Principles and Applications, Boston, MA, Artech House, 2005.
Klobuchar, J.A., Ionospheric Time-Delay Algorithm for Single- Frequency GPS Users, Proc. IEEE Transactions on Aerospace and Electronic System, Vol. AES-23, 1987.
Lachapelle, G., NAVSTAR GPS: Theory and Applications: Department of Geomatics Engineering, Canada, University of Calgary, 2002.
Lachapelle, G., Alves, P., Fortes, L. P., Cannon, M. E., DGPS RTK Positioning Using a Reference Network, Proceedings of ION GPS 2000, Salt Lake City, Utah, 1165-1171, 2000.
Landau, H., Vollath, U., Chen, X., Virtual Reference Station System, Journal of Global Positioning Systems, Vol. 1, No. 2, 137-143, 2002.
Leick, A., GPS Satellite Surveying 2nd, United of States, John Willey & Sons, 1995.
McDonald, K. D., A Future GNSS Concern on the Modernization of GPS and the Evolution of Galileo, Proceedings of ION GPS 2001, Salt Lake City, UT., 2804-2827, 2001.
Melbourne, W.G., The case for ranging in GPS based geodetic system, edited by Clyde Goad, Proceedings of. 1st International Symposium on precise positioning with GPS, with GPS Rockville, Maryland, 373-386, 1985.
Merino, M. M. R., Samper, M. D. L., Alarcon, A. J. G., and Quijada, A. G., Autonomous Low Cost Regional Navigation Satellite Systems Based on Geosynchronous Eccentric and Inclined Orbits, Proceedings ION GNSS 2007, Fort Worth, TX., 3025 – 3036, 2007.
Miller, J., Global Positioning System Policy and Program Update, Proc. ION GNSS 2007, Fort Worth, TX., 2007.
Misra, P., and Enge, P., Global Positioning System: Signals, Measurements, and performance, MA, Ganga-Jamuna Press, 2001.
Remondi, B.W., Performing Centimeter Accuracy relative surveys in seconds using GPS carrier phase, editd by Clyde Goad, Proceedings of 1st International Symposium on precise positioning with GPS, with GPS Rockville, Maryland, 789-797, 1985.
Roberts, C., Seynat, C., Rizos, C., Hooper, G., Low-cost deformation measurement system for volcano monitoring, 3rd FIG Regional Conference, Jakarta, Indonesia, October 3-7, 2004.
Rocken, C., Meertens, C., Stephens, B., Braun, J., VanHove, T., Perry.,S., Ruud, O., McCallum, M., Richardson, J.,UNAVCO Academic Research Infrastructure(ARI) Receiver and Antenna Test Report, http://www.unavco.org/pubs_reports/reports/annual/facility/fy_96/sections5-B/annual96-14.html, 1996.
Satirpod, C., Rizons, C., Wang J, GPS single point positioning with SA off: how accurate can we get? , Survey Review, Vil.36, No.282, 255-262, 2001.
Seeber, G., Satellite Geodesy: Foundations, Methods, and Application, Waler de Gruyter, Berlin, New York, 1993.
Volker, J., Roberts, C., Rizos, C., Abidin, H.Z., Low-Cost GPS-based Volcano Deformation Monitoring at Mt. Papandayan Indonesia, Journal of Volcano and Geothermal Research, 115, 139-151, doi:10.1016/S0377-0273(01)00312-2, 2002.
Talbot N.C., High-precision real-time GPS positioning concepts : modeling and results, Navigation, Journal of The Institute of Navigation, Vol. 38 No. 2, 147-161, 1991.
Trimble homepage: http://www.trimble.com/vrs.html.
Trimble homepage: http://www.trimble.com/totalcontrol_ts.asp
u-Blox homepage: http://www.u-blox.com/
Vollath, U., Landau, H., Pagels, C., Wagner, B., Multi-Base RTK Positioning Using Virtual Reference Stations, Proceedings of ION GPS 2000, Salt Lake City, Utah, 123-131, 2000.
Vollath, U., Deking A., Landau, H. Pagels, C.,Wagner, B., Long Range RTK using Virtual Reference Stations, Proceeings of the international Symposium on Kinematic system in Geodesy, Geomatics and Navigation , Banff, Canada, June 2001
Wolf, P.R. and Brinker, R.C.Elementary Sueveying. Ninth Edition, Harper Cllions College Publishera, New York, 1994.
Wubbena, G., Software developments for geodetic positioning with GPS using TI 4000 code and carrier measurements, editd by Clyde Goad, Proc. 1st International Symposium on precise positioning with GPS, with GPS Rockville, Maryland, 403-412, 1985.
Yang, M. and Goad, C.,and Schaffrin, B., Real-Time On-the-fly Ambiguity Resolution Over Short Baselines in the Presence of Anti-Spooing, Proceedings of ION GPS-94, Salt Lake City, Utah, 519-525, 1994.
Yang, M., Tseng, C. L., and Yu, J. Y., Establishment and Maintenance of Taiwan Geodetic Datum 1997, Journal of Surveying Engineering, Vol. 127, No. 4, 119-132, 2001.
Xu, G., GPS Theory, Algorithms and Application, New York, Springer-Verlag, 2003.
Yu, S. B, H.Y. Chen, and L.C. Kuo, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59, 1997.
Zinoviev, A. E., Using GLONASS in Combined GNSS Receivers: Current Status, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2005, Long Beach, California, 1046-1057, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw