進階搜尋


 
系統識別號 U0026-0812200915285852
論文名稱(中文) 高強度運動對於高血壓鼠由胰島素和類胰島素生長因子-1所媒介之血管功能的影響
論文名稱(英文) Effects of high-intensity exercise on insulin- and insulin-like growth factor-1-mediated vascular function in hypertensive rats
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 97
學期 2
出版年 98
研究生(中文) 李仁婷
研究生(英文) Jen-Ting Lee
電子信箱 t6696108@mail.ncku.edu.tw
學號 t6696108
學位類別 碩士
語文別 英文
論文頁數 65頁
口試委員 指導教授-楊艾倫
口試委員-林尊湄
口試委員-蔡曜聲
中文關鍵字 胰島素  運動  類胰島素生長因子-1  高血壓 
英文關鍵字 insulin-like growth factor-1  exercise  hypertension  insulin 
學科別分類
中文摘要 背景及目的:目前已知胰島素(insulin)與類胰島素生長因子-1(insulin-like growth factor-1; IGF-1)可經由內皮細胞產生一氧化氮(nitric oxide; NO)而達到調節血管張力的功能。先前的研究發現在高血壓的模式下,內皮依賴的血管舒張反應有受損的現象。且許多研究顯示,運動可藉由增進一氧化氮生物可用性(NO bioavailability)而改善血管功能。然而,尚無研究探討高強度運動對於高血壓由胰島素及類胰島素生長因子-1所媒介之血管舒張反應的影響。故本研究之目的在於探討高血壓之動物模式模式下,高強度運動對於由胰島素及類胰島素生長因子-1所媒介之血管舒張反
應的影響,及其潛在機制。
方法:本研究將實驗動物分為三組,高血壓鼠(spontaneously hypertensive rat; SHR)隨機分成運動組和非運動組,再以週齡相符的正常血壓鼠(Wistar Kyoto rat; WKY)作為對照組。運動組以跑
步機作單次高強度運動介入,速度為28-30公尺/分鐘,跑至筋疲力竭為止。在運動後立即犧牲,取出老鼠的胸主動脈作為血管舒張反應之分析用。我們加入特定的抑制劑,檢視phosphatidylinositol-3 kinase (PI3-K)及一氧化氮合成酶(nitric oxide synthase; NOS)在此血管反應中扮演的角色;也測試由一氧化氮提供者(sodium nitroprusside ;SNP)所誘發的血管反應;最後,我們用超氧化歧化酶(superoxide dismutase; SOD)檢視氧化性壓力對此血管反應的影響。
結果:我們發現(1)相較於正常血壓鼠,高血壓鼠由胰島素和類胰島素生長因子-1所媒介之血管舒張反應明顯地受損;(2)高強度運動介入可明顯地改善高血壓鼠由胰島素和類胰島素生長因子-1所媒介之血管舒張反應;(3)這些血管舒張反應的改變與PI3-K及一氧化氮
合成酶的活性變化有關;(4)SNP所媒介之非內皮依賴的血管舒張反應於三組間無顯著變化;(5)運動引起血管功能改善之效果可能與過氧化物的降低有關。
結論:高強度運動介入可經由增加PI3-K及一氧化氮合成酶的活性明顯地改善由高血壓所引起之血管功能受損情形,其潛在機制和過
氧化物的下降有關。本研究提供運動如何改善高血壓血管失能之部份理論基礎。
英文摘要 Background and Purpose: Insulin and insulin-like growth factor-1 (IGF-1) play important roles in the regulation of vascular tone via producing endothelium-derived nitric oxide (EDNO). Previous studies have demonstrated the impairments of endothelium-dependent vasorelaxation in hypertension. Furthermore, exercise is well known to improve vascular function through enhancing NO bioavailability. However, the effects of high-intensity exercise on insulin- and IGF-1-mediated vasorelaxation in
hypertension remain unknown. Therefore, the aim of this study was to investigate the effects of high-intensity exercise on vasorelaxant responses to insulin and IGF-1 in spontaneously hypertensive rats (SHR) and the underlying mechanisms.
Methods: Three groups of rats were used in this study: SHR with high-intensity exercise (SHR+Ex), sedentary SHR (SHR),
and Wistar-Kyoto rat (WKY) groups. The SHR+Ex group ran on treadmill at the speed of 28-30 m/min until exhaustion. The WKY group was used as normotensive control group. After high-intensity exercise, the thoracic aortas of rats were isolated immediately to measure insulin- and IGF-1-mediated vascular responses. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3-K) in the vasorelaxation. The vascular response induced by sodium nitroprusside (SNP, a NO donor) was also examined. Finally, superoxide dismutase (SOD), a superoxide scavenger, was used to evaluate the role of superoxide production in the vasorelaxation.
Results: We found that, 1) insulin- and IGF-1-mediated
vasorelaxation was significantly reduced in SHR compared with that in WKY; 2) high-intensity exercise ameliorated these adverse effects in SHR+Ex group; 3) the alterations of vascular responses to insulin and IGF-1 were mainly due
to the varied activities of PI3-K and NOS; 4) SNP-induced,
endothelium-independent vasorelaxation was comparable among three groups; 5) the exercise-induced beneficial effects on vascular dysfunction in hypertension could be related to the reduced level of superoxide production.
Conclusions: Our findings suggested that high-intensity exercise ameliorated the hypertension-induced vascular dysfunction through the endothelium-dependent PI3-K-NOS pathway, which was associated with the reduced level of superoxide production. This study supports the effectiveness of exercise intervention in reversing vascular dysfunction in hypertension.
論文目次 Introduction-------------------------------------------- 1
Materials and Methods
I. Drug ------------------------------------------------ 10
II. Experimental Animals ------------------------------- 11
III. Exercise Protocol --------------------------------- 11
IV. Measurement of Resting Heart Rate
and Blood Pressure --------------------------------- 12
V. Preparation of Blood Vessels------------------------- 12
VI. Evaluation of Vasorelaxant Responses---------------- 13
VII. Immunohistochemical Staining of eNOS in Aortas ---- 15
VIII. Statistical Analysis ----------------------------- 17
Results
I. Baseline parameters --------------------------------- 18
II. Concentration-response for ACh-mediated
vasorelaxation ------------------------------------- 18
III. Concentration-response for insulin- and IGF-1-mediated
vasorelaxation ------------------------------------ 19
IV. Concentration-response for SNP-mediated vasorelaxation ----------------------------------------- 21
V. Roles of PI3-K and NOS in ACh-mediated
vasorelaxation -------------------------------------- 21
VI. Roles of PI3-K and NOS in insulin- and IGF-1-mediated
vasorelaxation ----------------------------------------- 22
VII.Roles of superoxide in ACh, insulin- and IGF-1-mediated
vasorelaxation ----------------------------------------- 23
VIII. Protein expression of eNOS ----------------------- 24
Discussion --------------------------------------------- 25
Table--------------------------------------------------- 36
Figures ------------------------------------------------ 37
References --------------------------------------------- 52
參考文獻 1. Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J, 357(Pt 3), 593-615.
2. Amundsen, B. H., Rognmo, O., Hatlen-Rebhan, G., & Slordahl, S. A. (2008). High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J, 42(2), 110-117.
3. Bloomer, R. J., Goldfarb, A. H., & McKenzie, M. J. (2006). Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc, 38(6), 1098-1105.
4. Boo, Y. C., Sorescu, G., Boyd, N., Shiojima, I., Walsh, K., Du, J., et al. (2002). Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem, 277(5), 3388-3396.
5. Brook, R. D., & Julius, S. (2000). Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens, 13(6 Pt 2), 112S-122S.
6. Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 87(10), 840-844.
7. Ceriello, A. (2008). Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 31 Suppl 2, S181-184.
8. Chen Hi, H., Chiang, I. P., & Jen, C. J. (1996). Exercise Training Increases Acetylcholine-Stimulated Endothelium-Derived Nitric Oxide Release in Spontaneously Hypertensive Rats. J Biomed Sci, 3(6), 454-460.
9. Cheng, L., Yang, C., Hsu, L., Lin, M. T., Jen, C. J., & Chen, H. (1999). Acute exercise enhances receptor-mediated endothelium-dependent vasodilation by receptor upregulation. J Biomed Sci, 6(1), 22-27.
10. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr., et al. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA, 289(19), 2560-2572.
11. Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110(15), 2260-2265.
12. de Moraes, C., Davel, A. P., Rossoni, L. V., Antunes, E., & Zanesco, A. (2008). Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiol, 8, 12.
13. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., & Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 399(6736), 601-605.
14. Drexler, H., & Hornig, B. (1999). Endothelial dysfunction in human disease. J Mol Cell Cardiol, 31(1), 51-60.
15. Esler, M. (2000). The sympathetic system and hypertension. Am J Hypertens, 13(6 Pt 2), 99S-105S.
16. Gormley, S. E., Swain, D. P., High, R., Spina, R. J., Dowling, E. A., Kotipalli, U. S., et al. (2008). Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc, 40(7), 1336-1343.
17. Goto, C., Higashi, Y., Kimura, M., Noma, K., Hara, K., Nakagawa, K., et al. (2003). Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation, 108(5), 530-535.
18. Goto, C., Nishioka, K., Umemura, T., Jitsuiki, D., Sakagutchi, A., Kawamura, M., et al. (2007). Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens, 20(8), 825-830.
19. Graham, D. A., & Rush, J. W. (2004). Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol, 96(6), 2088-2096.
20. Grassi, G., Cattaneo, B. M., Seravalle, G., Lanfranchi, A., & Mancia, G. (1998). Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension, 31(1), 68-72.
21. Hambrecht, R., Adams, V., Erbs, S., Linke, A., Krankel, N., Shu, Y., et al. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation, 107(25), 3152-3158.
22. Hamilton, C. A., Brosnan, M. J., McIntyre, M., Graham, D., & Dominiczak, A. F. (2001). Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension, 37(2 Part 2), 529-534.
23. Haram, P. M., Adams, V., Kemi, O. J., Brubakk, A. O., Hambrecht, R., Ellingsen, O., et al. (2006). Time-course of endothelial adaptation following acute and regular exercise. Eur J Cardiovasc Prev Rehabil, 13(4), 585-591.
24. Harrison, D. G., & Gongora, M. C. (2009). Oxidative stress and hypertension. Med Clin North Am, 93(3), 621-635.
25. Hasdai, D., Rizza, R. A., Holmes, D. R., Jr., Richardson, D. M., Cohen, P., & Lerman, A. (1998). Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. Hypertension, 32(2), 228-234.
26. Haskell, W. L. (1994). J.B. Wolffe Memorial Lecture. Health consequences of physical activity: understanding and challenges regarding dose-response. Med Sci Sports Exerc, 26(6), 649-660.
27. Higashi, Y., Sasaki, S., Kurisu, S., Yoshimizu, A., Sasaki, N., Matsuura, H., et al. (1999). Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation, 100(11), 1194-1202.
28. Higashi, Y., & Yoshizumi, M. (2004). Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther, 102(1), 87-96.
29. Iaccarino, G., Ciccarelli, M., Sorriento, D., Cipolletta, E., Cerullo, V., Iovino, G. L., et al. (2004). AKT participates in endothelial dysfunction in hypertension. Circulation, 109(21), 2587-2593.
30. Jungersten, L., Ambring, A., Wall, B., & Wennmalm, A. (1997). Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol, 82(3), 760-764.
31. Kasuya, N., Kishi, Y., Sakita, S. Y., Numano, F., & Isobe, M. (2002). Acute vigorous exercise primes enhanced NO release in human platelets. Atherosclerosis, 161(1), 225-232.
32. Kearney, P. M., Whelton, M., Reynolds, K., Whelton, P. K., & He, J. (2004). Worldwide prevalence of hypertension: a systematic review. J Hypertens, 22(1), 11-19.
33. Kemi, O. J., Haram, P. M., Loennechen, J. P., Osnes, J. B., Skomedal, T., Wisloff, U., et al. (2005). Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res, 67(1), 161-172.
34. Lavi, S., Yang, E. H., Prasad, A., Mathew, V., Barsness, G. W., Rihal, C. S., et al. (2008). The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension, 51(1), 127-133.
35. Maeda, S., Miyauchi, T., Kakiyama, T., Sugawara, J., Iemitsu, M., Irukayama-Tomobe, Y., et al. (2001). Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci, 69(9), 1005-1016.
36. Maiorana, A., O'Driscoll, G., Taylor, R., & Green, D. (2003). Exercise and the nitric oxide vasodilator system. Sports Med, 33(14), 1013-1035.
37. Mancia, G., Grassi, G., Giannattasio, C., & Seravalle, G. (1999). Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension, 34(4 Pt 2), 724-728.
38. McCallum, R. W., Hamilton, C. A., Graham, D., Jardine, E., Connell, J. M., & Dominiczak, A. F. (2005). Vascular responses to IGF-I and insulin are impaired in aortae of hypertensive rats. J Hypertens, 23(2), 351-358.
39. Miyagawa, K., Ohashi, M., Yamashita, S., Kojima, M., Sato, K., Ueda, R., et al. (2007). Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J Hypertens, 25(2), 415-421.
40. Montagnani, M., & Quon, M. J. (2000). Insulin action in vascular endothelium: potential mechanisms linking insulin resistance with hypertension. Diabetes Obes Metab, 2(5), 285-292.
41. Muniyappa, R., Montagnani, M., Koh, K. K., & Quon, M. J. (2007). Cardiovascular actions of insulin. Endocr Rev, 28(5), 463-491.
42. Nakashima, H., Suzuki, H., Ohtsu, H., Chao, J. Y., Utsunomiya, H., Frank, G. D., et al. (2006). Angiotensin II regulates vascular and endothelial dysfunction: recent topics of Angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol, 4(1), 67-78.
43. O'Donovan, G., Owen, A., Bird, S. R., Kearney, E. M., Nevill, A. M., Jones, D. W., et al. (2005). Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol, 98(5), 1619-1625.
44. Oberman, A., Fletcher, G. F., Lee, J., Nanda, N., Fletcher, B. J., Jensen, B., et al. (1995). Efficacy of high-intensity exercise training on left ventricular ejection fraction in men with coronary artery disease (the Training Level Comparison Study). Am J Cardiol, 76(10), 643-647.
45. Oparil, S., Zaman, M. A., & Calhoun, D. A. (2003). Pathogenesis of hypertension. Ann Intern Med, 139(9), 761-776.
46. Orescanin, Z. S., Milovanovic, S. R., Spasic, S. D., Jones, D. R., & Spasic, M. B. (2007). Different responses of mesenteric artery from normotensive and spontaneously hypertensive rats to nitric oxide and its redox congeners. Pharmacol Rep, 59(3), 315-322.
47. Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., & Ray, C. A. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc, 36(3), 533-553.
48. Potenza, M. A., Marasciulo, F. L., Chieppa, D. M., Brigiani, G. S., Formoso, G., Quon, M. J., et al. (2005). Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol, 289(2), H813-822.
49. Ritchie, S. A., Ewart, M. A., Perry, C. G., Connell, J. M., & Salt, I. P. (2004). The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci (Lond), 107(6), 519-532.
50. Rizzoni, D. (2002). Endothelial dysfunction in hypertension: fact or fantasy? J Hypertens, 20(8), 1479-1481.
51. Rognmo, O., Hetland, E., Helgerud, J., Hoff, J., & Slordahl, S. A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil, 11(3), 216-222.
52. Rush, J. W., Turk, J. R., & Laughlin, M. H. (2003). Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol, 284(4), H1378-1387.
53. Schiffrin, E. L. (2008). Oxidative stress, nitric oxide synthase, and superoxide dismutase: a matter of imbalance underlies endothelial dysfunction in the human coronary circulation. Hypertension, 51(1), 31-32.
54. Schulman, I. H., Zhou, M. S., & Raij, L. (2006). Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension. J Hypertens Suppl, 24(1), S45-50.
55. Sekiguchi, F., Yanamoto, A., & Sunano, S. (2004). Superoxide dismutase reduces the impairment of endothelium-dependent relaxation in the spontaneously hypertensive rat aorta. J Smooth Muscle Res, 40(2), 65-74.
56. Simon, G. (2004). Pathogenesis of structural vascular changes in hypertension. J Hypertens, 22(1), 3-10.
57. Singh, R. B., Suh, I. L., Singh, V. P., Chaithiraphan, S., Laothavorn, P., Sy, R. G., et al. (2000). Hypertension and stroke in Asia: prevalence, control and strategies in developing countries for prevention. J Hum Hypertens, 14(10-11), 749-763.
58. Sowers, J. R. (1997). Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension, 29(3), 691-699.
59. Sowers, J. R. (2004). Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol, 286(5), H1597-1602.
60. Swain, D. P., & Franklin, B. A. (2006). Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol, 97(1), 141-147.
61. Taddei, S., & Salvetti, A. (2002). Endothelial dysfunction in essential hypertension: clinical implications. J Hypertens, 20(9), 1671-1674.
62. Thompson, P. D., Crouse, S. F., Goodpaster, B., Kelley, D., Moyna, N., & Pescatello, L. (2001). The acute versus the chronic response to exercise. Med Sci Sports Exerc, 33(6 Suppl), S438-445; discussion S452-433.
63. Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension, 44(3), 248-252.
64. Touyz, R. M., & Schiffrin, E. L. (2004). Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol, 122(4), 339-352.
65. Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., et al. (1995). Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol, 269(6 Pt 1), C1371-1378.
66. Vecchione, C., Colella, S., Fratta, L., Gentile, M. T., Selvetella, G., Frati, G., et al. (2001). Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension, 37(6), 1480-1485.
67. Watson, T. A., Callister, R., Taylor, R. D., Sibbritt, D. W., MacDonald-Wicks, L. K., & Garg, M. L. (2005). Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Med Sci Sports Exerc, 37(1), 63-71.
68. Williams, P. T. (2008). Relationship of running intensity to hypertension, hypercholesterolemia, and diabetes. Med Sci Sports Exerc, 40(10), 1740-1748.
69. Yamashita, N., Hoshida, S., Otsu, K., Asahi, M., Kuzuya, T., & Hori, M. (1999). Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med, 189(11), 1699-1706.
70. Yang, A. L., Jen, C. J., & Chen, H. I. (2003). Effects of high-cholesterol diet and parallel exercise training on the vascular function of rabbit aortas: a time course study. J Appl Physiol, 95(3), 1194-1200.
71. Yang, A. L., Su, C. T., Lin, K. L., Chao, J. I., You, H. P., & Lee, S. D. (2006). Exercise training improves insulin-induced and insulin-like growth factor-1-induced vasorelaxation in rat aortas. Life Sci, 79(21), 2017-2021.
72. Yang, A. L., Su, C. T., Lin, K. L., & Lee, S. D. (2008). Enhancement of vascular function mediated by insulin and insulin-like growth factor-1 following single exercise session. Chin J Physiol, 51(2), 71-77.
73. Zalba, G., Beaumont, F. J., San Jose, G., Fortuno, A., Fortuno, M. A., Etayo, J. C., et al. (2000). Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension, 35(5), 1055-1061.
74. Zecchin, H. G., Bezerra, R. M., Carvalheira, J. B., Carvalho-Filho, M. A., Metze, K., Franchini, K. G., et al. (2003). Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance--the obese middle-aged and the spontaneously hypertensive rats. Diabetologia, 46(4), 479-491.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw