進階搜尋


 
系統識別號 U0026-0812200915281898
論文名稱(中文) 二氧化鈦擔載碳材用於甲基橙光降解之效能
論文名稱(英文) The Performance of Carbon-Coated Titanium Dioxide for Photodegradation of Methyl Orange
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 陳婉貞
研究生(英文) Wan-Zhen Chen
電子信箱 n3696436@mail.ncku.edu.tw
學號 n3696436
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 口試委員-鄧熙聖
指導教授-翁鴻山
口試委員-朱信
口試委員-黃耀輝
中文關鍵字 吸附  甲基橙  光降解  酚醛樹脂  二氧化鈦擔載碳材 
英文關鍵字 carbon-coated TiO2  phenolic formaldehyde resin  methyl orange  adsorption  photodegradation 
學科別分類
中文摘要 二氧化鈦擔載碳材(Carbon-coated)之複合型光觸媒是以酚醛樹脂(PF4161)為碳之前驅體,擔載在Merck anatase型TiO2粉末上製備而成。本研究針對此複合型光觸媒探討的變因為(1)改變酚醛樹脂的分子量。(2)改變觸媒的碳化溫度。(3)改變酚醛樹脂的添加量。(4)改用Degussa P25 TiO2,並改變觸媒的碳化溫度。利用對甲基橙溶液的吸附(Adsorption)和光降解(Photodegradation)能力進行觸媒的測試,並且將製備的複合型光觸媒與商用TiO2(Merck anatase型、Degussa P25)的光催化活性相互比較。實驗結果顯示,在TiO2表面生成碳材能夠提升觸媒對甲基橙溶液的吸附能力與光降解能力,其中在3 g Merck anatase型TiO2粉末上,添加0.5 g的PF4161酚醛樹脂做為碳的前驅體,在700 oC的氮氣環境下進行碳化之觸媒,具有最高的光催化活性,其降解速率已經能夠與高活性的Degussa P25相互媲美,但是當TiO2表面碳材太多時,卻會降低甲基橙溶液的降解速率,這是因為碳對TiO2表面產生遮蔽作用,使光線不容易照射到TiO2表面上,降低電子-電洞的生成。然而,在Degussa P25 TiO2上擔載碳材卻無法提升對甲基橙降解之能力,可能是因為P25本身顆粒太小,使得較大的碳粒不容易擔載在TiO2表面上。
英文摘要 Composite photocatalysts for photodegradation of methyl orange (MO) were prepared by coating carbon on titanium dioxide (Merck anatase, TiO2(M)) with phenolic formaldehyde resins as precursors. The effects of molecular weight of phenolic formaldehyde resin, carbonization temperature, amount of phenolic formaldehyde resin and change of the active species (Degussa P25 TiO2) on the performance of these composite photocatalysts were investigated in this study. The adsorption capability and photocatalytic activities of the prepared photocatalysts were compared with those of commercial titanium dioxide (Merck anatase TiO2 and Degussa P25 TiO2). Experimental results show that carbon coated on titanium dioxide can increase not only MO adsorption but also degradation rate of MO. Phenolic formaldehyde resin of low molecular weight (PF4161) is the most suitable carbon precursor. The composite photocatalyst prepared with 0.167 g of PF4161 / g of TiO2(M) and calcined at 700 oC exhibits a higher photo- degradation rate of methyl orange than others and has a similar activity as commercial Degussa P25 TiO2. However, a large amount of coated carbon on TiO2 results in a decrease in degradation rate of MO due to the shield of UV irradiating on the surface of TiO2 by carbon. Carbon coated on Degussa P25 TiO2 could not improve the degradation rate of MO probably due to that particle sizes of Degussa P25 TiO2 were too small to be coated with larger carbon particles on their surface.
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 3
1-2-1 太陽能及紫外光 3
1-2-2光觸媒簡介 4
1-3 光觸媒之應用 6
1-3-1 空氣之淨化 6
1-3-2 水之淨化 6
1-3-3 水分解製氫反應 7
1-3-4 二氧化碳光催化還原反應 8
1-4 研究動機及目的 10
第二章 基礎理論與文獻回顧 12
2-1 二氧化鈦光觸媒 12
2-1-1 二氧化鈦基本性質 12
2-1-2 二氧化鈦光催化反應 15
2-1-2-1 二氧化鈦光催化反應原理 16
2-1-2-2 二氧化鈦光催化反應機制 19
2-1-2-3 光催化反應動力模式 20
2-2 活性碳 22
2-2-1 活性碳的性質 22
2-2-2 活性碳的吸附機制 23
2-3 二氧化鈦及活性碳之協同作用 24
2-4 以碳改質二氧化鈦之文獻回顧 25
2-5 光降解水中有機汙染物相關研究 27
第三章 實驗設備與方法 29
3-1 藥品與材料 29
3-2 儀器設備 30
3-3 實驗步驟 31
3-3-1 碳-二氧化鈦光觸媒之製備 31
3-3-2 C-TiO2複合型光觸媒用於甲基橙光降解反應 33
3-3-2-1 光催化反應系統 33
3-3-2-2 複合型光觸媒對甲基橙光降解之背景實驗 34
3-3-2-3 以碳-二氧化鈦光觸媒進行甲基橙光降解實驗 35
3-4 觸媒之鑑定與分析 36
3-4-1 X光繞射分析儀(XRD) 36
3-4-2 熱重分析儀(TGA) 38
3-4-3 表面吸附儀 38
3-4-4 掃描式電子顯微鏡(SEM) 40
3-4-5 穿透式電子顯微鏡(TEM) 40
3-4-6 紫外線-可見光吸收光譜儀(UV-Vis) 41
3-4-7 拉曼光譜儀(Raman) 43
第四章 複合材料之物性與光學性質之測定 44
4-1 觸媒特性分析 44
4-1-1 酚醛樹脂的分子量對TiO2(M)擔載碳材的影響 44
4-1-2 碳化溫度對TiO2擔載碳材的影響 55
4-1-3 酚醛樹脂的添加量對TiO2擔載碳材的影響 66
4-1-4 碳化溫度對Degussa P25二氧化鈦光觸媒擔載碳材的影響 75
4-2 以二氧化鈦擔載碳材用於光降解甲基橙之實驗 86
4-2-1 甲基橙之全光譜圖與濃度校正曲線 86
4-2-2 反應系統測試結果 88
4-2-2-1 光源 88
4-2-2-2 不加觸媒直接光降解實驗 89
4-2-3 酚醛樹脂的分子量對C-TiO2(M)複合型光觸媒降解效能之影響 90
4-2-4 碳化溫度對C-TiO2(M)複合型光觸媒降解效能之影響 93
4-2-5 酚醛樹脂添加量對C-TiO2(M)複合型光觸媒降解效能之影響 96
4-2-6 碳化溫度對C-TiO2(D)複合型光觸媒降解效能之影響 98
第五章 總結 103
5-1 結論 103
5-2 未來研究方向與建議 105
參考文獻 106
附錄 112
自述 116
參考文獻 [01] A. W. Jacoby, D. M. Blake, J. A. Fennell, J. E. Boulter, and L. M. Vargo, Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air., The 88th Air & Waste Management Assoication, 46, 891, (1996).
[02] M. Grätzel, Powering the Planet., Nature, 403, 363, (2000).
[03] 呂宗昕, 圖解奈米科技與光觸媒, 商周出版, (2003).
[04] A. Fujishima, and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode., Nature, 238, 37, (1972).
[05] S. N. Frank, and J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO2 Powder., Journal of the American Chemical Society, 99, 303, (1977).
[06] 林有銘, 無所不在的環境清潔工-奈米光觸媒, 科學發展第408期, 24, (2006).
[07] 高濂,鄭珊,張青紅, 奈米光觸媒, 五南圖書出版股份有限公司, (2004)
[08] 鄭光煒, 前瞻能源技術-太陽能製氫技術, (2007).
[09] T. Sakata, and T. Kawai, Photosynthesis and Photocatalysis with Semi- conductor Powders, Energy Resources through Photochemistry and Catalysis, 331, (1983).
[10] V. Balzani, and F. Scandola, Light-induced and Thermal Electron- transfer Reactions., Energy Resources through Photochemistry and Catalysis, 2, (1983).
[11] M. Halmann, Photochemical Fixation of Carbon Dioxide., Energy Resources through Photochemistry and Catalysis, 507, (1983).
[12] B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., (1999).
[13] T. Inoue, A. Fujishima, and S. Konishi, Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powder., Nature, 277, 637, (1979).
[14] K. Adachi, K. Ohta, and T. Mizuno, Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon Using Copper-loaded Titanium Dioxide., Solar Energy, 53, 187, (1994).
[15] S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, and A. Saji, Photocatalytic Reduction of CO2 Using TiO2 Powders in Liquid CO2 Medium., Journal of Photochemistry and Photobiology A: Chemistry, 109, 59, (1997).
[16] T. Minuno, K. Adachi, K. Ohta, and A. Saji, Effect of CO2 Pressure on Photocatalytic Reduction of CO2 Using TiO2 in Aqueous Solutions., Journal of Photochemistry and Photobiology A: Chemistry, 98,87,(1996).
[17] B. lian, and Y. Zhong, Phase Diagrams for Ceramics Figure., The American Ceramic Society Inc., 4150, (1975).
[18] A. L. Linsebigler, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results., Chemical Reviews, 95, 735, (1995).
[19] 林業騫, 銀鉭系波洛斯凱特型與TiO2光觸媒用於二氧化碳光催化還原反應之效能-光觸媒物性和光學性質之鑑定及光催化活性之初步測定, 國立成功大學化學工程學系碩士論文, (2008).
[20] A. Sclafani, and J. H. Herrmann, Comparison of the Photoelectronic and Photo- catalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions., Journal of Physical Chemistry, 100, 13655, (1996).
[21] A. Sclafani, L. Palmisano, and M. Schiavello, Influence of the Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion., Journal of Physical Chemistry, 94, 829, (1990).
[22] T. R. N. Kutty, and S. Ahuja, Retarding Effect of Surface Hydroxylation on Titanium(IV) Oxide Photocatalyst in the Degradation of Phenol., Materials Research Bulletin, 30, 233, (1995).
[23] A. Kudo, H. Kato, and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting., Catalysis Surveys from Asia, 7, 31, (2003).
[24] R.W. Matthews, An Adsorption Water Purifier with in Situ Photocatalytic Regeneration., Journal of Catalysis, 113, 549, (1988).
[25] E. Brillas, E. Mur, and R. Sauleda, Aniline Mineralization by AOP: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photo-Electro- Fenton Processes, Applied Catalysis B: Environmental, 16, 3142, (1998).
[26] R. M. Alberici, and W. F. Jardim, Photocatalytic Destruction of VOCs in the Gas-Phase Using Titanium Dioxide., Applied Catalysis B: Environmental, 14, 55, (1997).
[27] M. Anpo, T. Shima, S. Kodama, Photocatalytic Hydrogenation of CH3OH with H2O on Small Particle TiO2 Size Quantization Effects and Reaction Inter- mediates., Journal of Physical Chemistry, 91, 4305, (1987).
[28] J. M. Herrmann, Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants., Catalysis Today, 53, 115, (1999).
[29] M. A. Fox, and M. T. Dulay, Heterogeneous Photocatalysis., Chemical Reviews, 93, 341, (1993).
[30] IUPAC Mannal of Symbols and Terminology, Appendix 2, Pt.1, Colloid and Surface Chemistry, Pure and Applied Chemistry, 31, 578, (1972).
[31] S. J. Gregg, and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press: London, (1991).
[32] 邱正宏, 吸附於活性碳表面揮發性有機物之熱脫附動力學研究, 國立中山大學環境工程研究所碩士論文, (1993).
[33] 蔣本基, 活性碳物理化學特性對VOCs吸附之影響, 工業污染防治, 第58期, (1996).
[34] 劉瑞華, 低濃度揮發性有機物在吸附劑中之傳輸與平衡研究, 國立成功大學環境工程研究所碩士論文, (1998).
[35] H. Yoneyama, Titanium Dioxide/Adsorbent Hybrid Photocatalyst for Photodestruction of Organic Substances of Dilute Concentrations., Catalysis Today, 58, 133, (2000).
[36] J. Matos, and J. Laine, Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon., Applied Catalysis B: Environmental, 18, 281, (1998).
[37] C. Lettmann, and K. Hildenbrand, Visible Light Photodegradation of 4-Chlorophenol with a Coke-Containing Titanium Dioxide Photocatalyst., Applied Catalysis B: Environmental, 32, 215, (2001).
[38] T. Tsumura, and N. Kojitani, Composites between Photoactive Anatase-Type TiO2 and Adsorptive Carbon., Applied Surface Science, 196, 429, (2002).
[39] S. U. M. Khan, and M. Al-Shahry, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2., Science, 297, 2243, (2002).
[40] Y. Li, and D. S. Hwang, Synthesis and Characterization of Carbon-doped Titania as an Artificial Solar Light Sensitive Photocatalyst., Chemical Physics Letters, 404, 25, (2005).
[41] H. Irie, and Y. Watanabe, Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst., Chemistry Letters, 32, 772, (2003).
[42] T. Tachikawa, and S. Tojo, Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time- Resolved Diffuse Reflectance Spectroscopy., Journal of Physical Chemistry B, 108, 19299, (2004).
[43] M. A. Fox, and M. T. Dulay, Hetergeneous Photocatalysis., Chemical Reviews, 93, 341, (1993).
[44] P. V. Kamat, Photochemistry on Nonreactive and Reactive Semicon- ductor Surfaces., Chemical Reviews, 93, 267, (1993).
[45] S. Murasawa, and Y. Takaoka, Several Applications of TiO2 Photo- catalyst for Water and Air Purification., The First International Conference on Advanced Oxidation Technologies for Water and Air Remedi- ation Abstracts, June, Canada, (1994).
[46] T. Ibusuki, and K. Takeuchi, Removal of Low Concentration Nitrogen Oxides through Photoassisted Heterogeneous Catalysis., Journal of Molecular Catalysis, 88, 93, (1994).
[47] 劉哲維, 中空碳球生成機制研究與MgO作為鑄模合成中孔洞碳材方法之研究, 國立成功大學化學系研究所碩士論文, (2007).
[48] B. D. Cullity, and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, (2001).
[49] M. Yan, F. Chen, J. Zhan, and M. Anpo, Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties., Journal of Physical Chemistry B, 109, 8673, (2005).
[50] S. Brunaller, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers., Journal of the American Chemical Society, 60, 309, (1938).
[51] T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki, Carbon Coating of Anatase-type TiO2 and Photoactivity., Journal of Materials Chemistry, 12, 1391, (2002).
[52] M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda, Carbon Coating of Anatase-type TiO2 through Their Precipitation in PVA Aqueous Solution., Carbon, 41, 2619, (2003).
[53] B. Tryba, T. Tsumura, M. Janus, A. W. Morawski, and M. Inagaki, Carbon-coated Anatase: Adsorption and Decomposition of Phenol in Water., Applied Catalysis B: Environmental, 50, 177, (2004).
[54] E. Terrado, M. Redrado, E. Munoz, W. K. Maser, A. M. Benito, and M. T. Martinez, Aligned Carbon Nanotubes Grown on Alumina and Quartz Substrates by a Simple Thermal CVD Process., Diamond and Related Materials, 15, 1059, (2006).
[55] 翁群偉, 共濺鍍沉積組合式碳與TiO2複合薄膜光觸媒活性之研究, 國立東華大學材料與工程學研究所碩士論文, (2007).
[56] R. A. Spurr, and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-ray Diffractometer., Analytical Chemistry, 29, 760, (1957).
[57] H. Al-Ekabi, and N. Serpone, Kinetics Studies in Heterogeneous Photo- catalysis.1. Photocatalytic Degradation of Chlorinated Phenols in Aerated Aqueous Solutions over Titania Supported on a Glass Matrix., Journal of Physical Chemistry, 92, 5726, (1988).
[58] C. Wang, X. Wang, B. Q. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, and J. Fu, Enhanced Photocatalytic Performance of Nanosized Coupled ZnO/ SnO2 Photocatalysts for Methyl Orange Degradation, Journal of Photochemistry and Photobiology A: Chemistry, 168, 47, (2004).
[59] I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophy- tides, and P. Falaras, Characterization and Photocatalytic Activity of Au/TiO2 Thin Films for Azo-dye Degradation., Journal of Catalysis, 220, 127, (2003).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw