系統識別號 U0026-0812200915281391
論文名稱(中文) TLE2和Hes6在肌肉分化中所扮演的角色
論文名稱(英文) The role of TLE2 and Hes6 in muscle differentiation
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 97
學期 2
出版年 98
研究生(中文) 李美璇
研究生(英文) Mei-Hsuang Lee
電子信箱 s2695408@mail.ncku.edu.tw
學號 s2695408
學位類別 碩士
語文別 中文
論文頁數 61頁
口試委員 口試委員-吳昭良
中文關鍵字 肌肉分化 
英文關鍵字 Hes6  TLE2 
中文摘要 近年來,肌肉幹細胞 (muscle stem cell) 的發現,使我們瞭解到肌肉分化除了發生在胚胎時期,也會發生在成人的身上,例如:運動或是受傷時,位於肌肉basal lamina下方的衛星細胞 (satellite cell) 為了因應身體的需求,會被活化、增生,並且分化成肌纖維母細胞,再進一步分化成有功能的肌肉,補充身體的需求。然而,對於衛星細胞如何受到外界刺激調控,仍然有許多未知之處。目前已知,會促進肌肉分化的基因除了MyoD、Myogenin等MRFs (muscle regulatory transcription factors)以外,也有越來越多研究指出,Hes6 (hairy enhancer of split 6)也參與在神經、肌肉的發育過程當中,並且其WRPW motif被認為扮演著重要的角色。其中,會藉由WRPW motif和Hes family結合的蛋白質已知為TLE family,並且也有許多研究指出,TLE family參與許多發育的調控。因此本篇研究即探討TLE2是否參與在Hes6蛋白對於肌肉分化的調控當中。結果發現,大量表達TLE2蛋白質會抑制C2C12細胞的myogenin mRNA轉錄,以及抑制肌肉管的形成,其中機制是透過抑制Hes6蛋白質表現;另外一方面,大量表達Hes6蛋白質也會促進TLE2蛋白分解,使TLE2 過量表現的細胞能夠分化。這些結果顯示,TLE2抑制Hes6所調控的肌肉分化,使不分化的細胞增加,可能參與肌肉幹細胞保存的過程。
英文摘要 The discovery of muscle stem cell leads us to understand that muscle differentiation not only occur in embryonic stage but also in adult. For example, in exercise or injuries, satellite cell located under basal lamina will be activated, proliferate, and differentiate into myoblasts. Then, myoblasts fuse into myotubes to supply the needs of body. More and more researches indicate that Hes6 transcription factor participates in the regulation of neurogenesis and myogenesis, and its WRPW motif is essential for muscle differentiation. On the other hand, TLE family proteins, which may participate in the regulation of many developmental processes, interact with Hes family protein through the WRPW motif of Hes. We are interested to study how TLE2 regulate muscle differentiation via Hes6. We found TLE2 was increased along myotubes formation from C2C12 cells. And overexpressing TLE2 or TLE1 inhibited myogenin expression and myotubes formation accompanying with down-regulation of Hes6. On the other hand, forced expression of Hes6 in TLE2 overexpressing C2C12 cells facilitates TLE2 protein degradation and restores the ability of TLE2 overexpressing cells to differentiate. Our results indicate that TLE family proteins are inhibitors of muscle differentiation and negatively regulate myotube formation, which might be required for myogenic cells to remain in an undifferentiated stage for next muscle regulation.
論文目次 縮寫檢索表01
參考文獻 Benezra, R., Davis, R. L., Lassar, A., Tapscott, S., Thayer, M., Lockshon, D. and Weintraub, H. (1990). Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci 599, 1-11.
Bengal, E., Ransone, L., Scharfmann, R., Dwarki, V. J., Tapscott, S. J., Weintraub, H. and Verma, I. M. (1992). Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell 68, 507-19.
Charge, S. B. and Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev 84, 209-38.
Chen, G. and Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene 249, 1-16.
Chen, G., Fernandez, J., Mische, S. and Courey, A. J. (1999). A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13, 2218-30.
Choi, C. Y., Kim, Y. H., Kim, Y. O., Park, S. J., Kim, E. A., Riemenschneider, W., Gajewski, K., Schulz, R. A. and Kim, Y. (2005). Phosphorylation by the DHIPK2 protein kinase modulates the corepressor activity of Groucho. J Biol Chem 280, 21427-36.
Cinnamon, E., Helman, A., Ben-Haroush Schyr, R., Orian, A., Jimenez, G. and Paroush, Z. (2008). Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis. Development 135, 829-37.
Cinnamon, E. and Paroush, Z. (2008). Context-dependent regulation of Groucho/TLE-mediated repression. Curr Opin Genet Dev 18, 435-40.
Conboy, I. M. and Rando, T. A. (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3, 397-409.
Cossins, J., Vernon, A. E., Zhang, Y., Philpott, A. and Jones, P. H. (2002). Hes6 regulates myogenic differentiation. Development 129, 2195-207.
Fisher, A. L. and Caudy, M. (1998). Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12, 1931-40.
Fisher, A. L., Ohsako, S. and Caudy, M. (1996). The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16, 2670-7.
Gao, X., Chandra, T., Gratton, M. O., Quelo, I., Prud'homme, J., Stifani, S. and St-Arnaud, R. (2001). HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 154, 1161-71.
Gasperowicz, M. and Otto, F. (2005). Mammalian Groucho homologs: redundancy or specificity? J Cell Biochem 95, 670-87.
Gratton, M. O., Torban, E., Jasmin, S. B., Theriault, F. M., German, M. S. and Stifani, S. (2003). Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23, 6922-35.
Grbavec, D. and Stifani, S. (1996). Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223, 701-5.
Guo, M., Jan, L. Y. and Jan, Y. N. (1996). Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27-41.
Hasson, P., Egoz, N., Winkler, C., Volohonsky, G., Jia, S., Dinur, T., Volk, T., Courey, A. J. and Paroush, Z. (2005). EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 37, 101-5.
Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N. and Klein, W. H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501-6.
Hawke, T. J. and Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91, 534-51.
Hu, J. S., Olson, E. N. and Kingston, R. E. (1992). HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol 12, 1031-42.
Ito, Y. (1996). Structural alterations in the transcription factor PEBP2/CBF linked to four different types of leukemia. J Cancer Res Clin Oncol 122, 266-74.
Jarriault, S., Le Bail, O., Hirsinger, E., Pourquie, O., Logeat, F., Strong, C. F., Brou, C., Seidah, N. G. and Isra l, A. (1998). Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol Cell Biol 18, 7423-31.
Javed, A., Guo, B., Hiebert, S., Choi, J. Y., Green, J., Zhao, S. C., Osborne, M. A., Stifani, S., Stein, J. L., Lian, J. B. et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 113 ( Pt 12), 2221-31.
Jen, Y., Weintraub, H. and Benezra, R. (1992). Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6, 1466-79.
Jennings, B. H., Pickles, L. M., Wainwright, S. M., Roe, S. M., Pearl, L. H. and Ish-Horowicz, D. (2006). Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell 22, 645-55.
Kageyama, R., Ohtsuka, T. and Kobayashi, T. (2007). The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243-51.
Kang, S. A., Seol, J. H. and Kim, J. (2005). The conserved WRPW motif of Hes6 mediates proteasomal degradation. Biochem Biophys Res Commun 332, 33-6.
Kopan, R., Nye, J. S. and Weintraub, H. (1994). The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385-96.
Kuang, S. and Rudnicki, M. A. (2008). The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 14, 82-91.
Kuroda, K., Tani, S., Tamura, K., Minoguchi, S., Kurooka, H. and Honjo, T. (1999). Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 274, 7238-44.
Luo, D., Renault, V. M. and Rando, T. A. (2005). The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16, 612-22.
Molkentin, J. D. and Olson, E. N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A 93, 9366-73.
Muhr, J., Andersson, E., Persson, M., Jessell, T. M. and Ericson, J. (2001). Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861-73.
Nofziger, D., Miyamoto, A., Lyons, K. M. and Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126, 1689-702.
Nuthall, H. N., Joachim, K. and Stifani, S. (2004). Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. Mol Cell Biol 24, 8395-407.
Ordentlich, P., Lin, A., Shen, C. P., Blaumueller, C., Matsuno, K., Artavanis-Tsakonas, S. and Kadesch, T. (1998). Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 18, 2230-9.
Petropoulos, H. and Skerjanc, I. S. (2000). Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47. J Biol Chem 275, 25095-101.
Pissarra, L., Henrique, D. and Duarte, A. (2000). Expression of hes6, a new member of the Hairy/Enhancer-of-split family, in mouse development. Mech Dev 95, 275-8.
Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. and Nakanishi, S. (1992). Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6, 2620-34.
Shawber, C., Nofziger, D., Hsieh, J. J., Lindsell, C., Bogler, O., Hayward, D. and Weinmaster, G. (1996). Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122, 3765-73.
Shefer, G., Van de Mark, D. P., Richardson, J. B. and Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294, 50-66.
Stifani, S., Blaumueller, C. M., Redhead, N. J., Hill, R. E. and Artavanis-Tsakonas, S. (1992). Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2, 119-27.
Sun, D., Li, H. and Zolkiewska, A. (2008). The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation. J Cell Sci 121, 3815-23.
Vasyutina, E., Lenhard, D. C. and Birchmeier, C. (2007). Notch function in myogenesis. Cell Cycle 6, 1451-4.
Weintraub, H. (1993). The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75, 1241-4.
Yun, K. and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8, 877-89.
Zammit, P. S., Golding, J. P., Nagata, Y., Hudon, V., Partridge, T. A. and Beauchamp, J. R. (2004). Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166, 347-57.
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-05起公開。

  • 如您有疑問,請聯絡圖書館