進階搜尋


 
系統識別號 U0026-0812200915280681
論文名稱(中文) 自組裝單分子膜化學吸附於金表面應用於微奈米微影及生物分子鑑別
論文名稱(英文) Self-Assembled Monolayers Chemically Adsorbed on Au for Micro/Nano Lithography Pattern and Bio-Molecular Recognition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 吳奕德
研究生(英文) Yi-Te Wu
學號 N5891122
學位類別 博士
語文別 中文
論文頁數 93頁
口試委員 指導教授-廖峻德
召集委員-陳玉惠
口試委員-王士豪
口試委員-陳家浩
口試委員-許聯崇
口試委員-李玉郎
中文關鍵字 正或負型光阻  微影製程  生物分子鑑別  自組裝單分子層  低能量電子束微影製程 
英文關鍵字 negative or positive resist  lithography processing  self-assembled monolayers  low energy e-beam lithography  bio-molecules recognition 
學科別分類
中文摘要 自我組裝單分子層(self-assembled monolayers, SAMs)化學吸附於金面(SAMs/Au)可形成具有穩定性高、排列整齊、製程簡單及多樣化末端官能基的結構。本研究以SAMs/Au為基礎,應用於生物分子鑑別及微影製程,之後並進行成效評估及機制討論。
於生物分子鑑別方面,以16-mercaptohexadecanoic acid (MHDA)固定於Au (MHDA/Au)表面為基材,利用媒合作用將寡核苷酸固定於含O=C-O官能基之MHDA/Au上,之後進行雜合反應。以醯胺鍵媒合乃是形成寡核苷酸固定的重要中間結構,而雜合反應可檢測其成效。經化學及光譜分析顯示,以37 ℃在pH值為4.5的反應環境條件下,所進行的寡核苷酸分子固定及核酸雜合程序之成效最佳。
於微影製程應用方面,使用octadecanethiol (ODT)化學吸附於金面(ODT/Au)為基材,並應用微觸壓印技術及低能量電子束微影製程,以製作圖案轉印。經微觸壓印之ODT/Au,可形成金蝕刻液之阻抗層,然而,ODT分子於圖案邊界之側向鍵結力較弱,易受金蝕刻液破壞。此破壞主要相關於金蝕刻液可跨越邊界並沿著SAMs-Au界面側向擴散,結果使蝕刻後之轉印圖案解析度變差。另外,使用低能量電子束微影對ODT/Au進行光罩圖案轉移,並以濕式蝕刻方式進行另圖案的顯影。實驗結果顯示:可藉由劑量的調整,使碳鏈間的部份交聯反應及S-Au鍵結未被大量破壞等因素共同影響下,經蝕刻後顯影正或負型圖案。於本實驗中,8-10 mC/cm2 (50 eV)是造成此轉變劑量區。
進一步的應用可將上述兩種技術應用於生物微機電系統,使圖案的設計更為彈性,檢測所需區域更為微小化。
英文摘要 Self-assembled monolayers (SAMs) chemically adsorbed on Au (SAMs/Au) are capable of forming a functionalized structure with high stability, good uniformity, easy preparation, and diversified end-group. In this study, we utilize SAMs/Au as the modeling basis for the applications of bio-molecules recognition and lithography processing. Subsequently, these two functions are examined, while their mechanisms are discussed.
In the case of bio-molecules recognition, 16-mercaptohexadecanoic acid (MHDA) was chemically adsorbed on Au (MHDA/Au) as the base substrate. A specific amino group modified oligonucleotide was then coupled with the carboxyl-terminated MHDA/Au and subsequently hybridized with anti-sense primer. The amide-coupling process is of significance to create an intermediate structure for the purpose of primer immobilization, while the hybridization reaction is relevant to diagnostic purposes. From chemical and spectroscopic analyses, an optimized condition for both coupling and hybridization processes was resulted at 37℃ and pH value of 4.5.
In the case of lithography processing, we utilized octadecanethiol (ODT) chemically adsorbed on Au (ODT/Au) as the base substrate and applied micro-contact imprint and low energy e-beam lithography techniques for pattern transferring application. The micro-contact imprinted ODT/Au exhibited resistant to Au-etching solution. However, ODT molecules at the border between ODT/Au and Au were relatively weak in bonding and facile to be attacked by Au-etching solution. This degradation is predominantly related to a lateral diffusion of the active etching agents across these edges, along the SAMs-Au interface. This process can result in a blurring and narrowing of the printing features of a micro-contact SAMs pattern at its transfer to the underlying substrate. In addition, ODT/Au was masked and performed by low energy e-beam lithography and a pattern caused by e-beam was transferred. Subsequently, the pattern was again transferred by Au-etching solution. Experimental results demonstrated that by adjusting the irradiation dose, the degree of cross-linking and the amount of S-Au bonds could alter the behavior of the SAM resist. As a consequence, either positive or negative resist could be formed. The behavior of transition from the negative to positive resist occurred at 8-10 mC/cm2 (50 eV) under the conditions of our experiments.
It is furthermore advantageous to apply these two techniques for a bio-MENS system by designing a flexible pattern and minimizing the required area for detection.
論文目次 第一章 導論------------------------------------------1
1.1 導論---------------------------------------------1
1.2 研究目的-----------------------------------------4
第二章 理論基礎與文獻回顧----------------------------6
2.1 SAMs簡介----------------------------------------6
2.2 生物分子固定理論---------------------------------12
2.3 微觸壓印原理-------------------------------------15
2.4 物理源對SAMs的效應-------------------------------20
2.4.1電子束對SAMs的效應------------------------------20
2.4.2 X-ray對SAMs的效應-----------------------------24
第三章 材料與方法------------------------------------28
3.1 SAMs製備-----------------------------------------28
3.2 寡核苷酸於SAMs表面之固定程序---------------------29
3.2.1 Sequence Specific Oligonucleotide Probe,SSOP測試
-----------------------------------------------29
3.2.2 寡核苷酸之固定於雜合反應-----------------------30
3.2.3 高解析XPS分析---------------------------------31
3.3 微壓印圖樣轉移製程-------------------------------31
3.3.1 母模製備及壓印前處理---------------------------31
3.3.2 壓印軟模之製作---------------------------------32
3.3.3 微觸壓印圖樣轉移-------------------------------32
3.4 低能量電子束對於SAMs之化學結構改質---------------34
3.5 高解析光電子能譜儀以及掃描式光電子顯微術分析-----36
第四章 SAMs於表面生物功能性改質應用之研究------------42
4.1 探討反應環境因素對於寡核苷酸固定之影響-----------42
4.2 以官能基觀點評估寡核苷酸固定成效-----------------44
4.3 以原子分佈觀點評估寡核苷酸固定及雜合反應成效-----48
4.4 以冷光標定方式評估寡核苷酸固定及雜合反應成效-----55
4.5 綜合討論-----------------------------------------57
第五章 SAMs於圖樣轉印之應用---微觸壓印製程之研究-----58
5.1 微觸壓印之SAMs性質分析---------------------------58
5.1.1 微觸壓印之SAMs形貌探討-------------------------58
5.1.2 微觸壓印之SAMs物化性質探討---------------------60
5.2 微觸壓印之圖像轉移評估---------------------------61
5.2.1 微觸壓印轉印圖像之物化特性探討-----------------61
5.2.2 微觸壓印轉印圖像之形貌探討---------------------65
5.3 綜合討論-----------------------------------------70
第六章 SAMs於圖樣轉印之應用---低能量電子束微影製程之研究
----------------------------------------------71
6.1 以不同電子照射劑量進行SAMs改質之評估-------------71
6.1.1 以表面潤濕性質探討SAMs改質成效-----------------72
6.2 經低能量電子微影製程顯像後之圖像形貌評估---------73
6.2.1 二次電子顯像之圖像評估-------------------------73
6.2.2 AFM掃描之圖像表貌評估-------------------------75
6.3 經低能量電子微影製程後SAMs於化學結構觀點的探討---75
6.4 綜合討論-----------------------------------------81
結論-------------------------------------------------82
參考文獻---------------------------------------------84
Personal publishings---------------------------------90
Resume-----------------------------------------------93
參考文獻 [1] A. B. Artyukhin, and P. Stroeve, "Effects of corrosive chemicals on solid-supported lipid bilayers as measured by surface plasmon resonance", Ind. Eng. Chem. Res., Vol. 42, pp. 2156-2162, 2003.
[2] Q. Zhang, and L. A. Archer, "Boundary lubrication and surface mobility of mixed alkylsilane self-assembled monolayers", J. Phys. Chem. B, Vol. 107, pp. 13123-13132, 2003.
[3] A. Ulman, "Formation and structure of self-assembled monolayers", Chem. Rev., Vol. 96, pp. 1533-1554, 1996.
[4] N. K. Chaki, and K. Vijayamohanan, "Self-assembled monolayers as a tunable platform for biosensor applications", Biosen. and Bioelectron., Vol. 17, pp. 1-12, 2002.
[5] Y. Xia, X.-M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists", Microelectron. Eng., Vol. 32, pp. 255-268, 1996.
[6] T. Massimo, B. Tatiana, S. Bernd, S. Georg, and W. M. Laurens, "Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing", Appl. Phys. Lett., Vol. 81, pp. 2094-2096, 2002.
[7] Y. Xia, and G. M. Whitesides, “Soft lithography”, Angew. Chem. Int. Edit., Vol. 37, pp. 550-575, 1998.
[8] E. Delamarche, M. Geissler, H. Wolf, and B. Michel, “Positive microcontact printing”, J. Am. Chem. Soc., Vol. 124, pp. 3834-3835, 2002.
[9] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, and G. M. Whitesides, “Self-assembled monolayers of alkanethiolates on palladium are good etch resists”, J. Am. Chem. Soc., Vol. 124, pp. 1576-1577, 2002.
[10] S. Friebel, J. Aizenberg, S. Abad, and P. Wiltzius, "Ultraviolet lithography of self-assembled monolayers for submicron patterned deposition", Appl. Phys. Lett., Vol. 77, pp. 2406-2408, 2000.
[11] M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey, and M. Grunze, "Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface", Phys. Chem. Chem. Phys., Vol. 1, pp. 3163 -3171, 1999.
[12] M. Zharnikov, and M. Grunze, "Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects", J. Vac. Sci. Technol. B, Vol. 20, pp. 1793-1807, 2002.
[13] M. J. Lercel, M. Rooks, R. C. Tiberio, H. G. Craighead, C. W. Sheen, A. N. Parikh, and D. L. Allara, "Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography", J. Vac. Sci. Technol. B, Vol. 13, pp. 1139-1143, 1995.
[14] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, and M. Grunze, "Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography", Appl. Phys. Lett., Vol. 75, pp. 2401-2403, 1999.
[15] R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, "Lithography with a focused soft X-ray beam and a monomolecular resist", Langmuir, Vol. 20, pp. 2050-2053, 2004.
[16] K. Matsuura, Y. Ebara, and Y. Okahata, "Gas phase molecular recognition on nucleobase monolayers immobilized on a highly sensitive quartz-crystal microbalance", Langmuir, Vol. 13, pp. 814-820, 1997.
[17] A. Ulman, "An introduction to ultrathin organic films from langmuir-blodgett to self-assembly", Academic press, 1991.
[18] H. O. Finklea, B. Robinsin, L. R. Richter, A. B. Allara, and D. T. Bright," Formation of an organized monolayer by solution adsorption of octadecyltrichlorosilane on gold: electrochemical properties and structural characterization", Lamgmuir, Vol. 2, pp. 239-244, 1986.
[19] P. E. Laibinis, G. M. Whiteside, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures an wetting properties of self assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au", J. Am. Chem. Soc., Vol. 113, pp. 7152-7167, 1991.
[20] M. D. Porter, T. B. Bright, A. B. Allara, and C. E. D. Christopher, "Spontaneously organize molecular assemblies. structural characterization of n-alklythiol monolayers on gold by optical ellipsometry, infrared spectroscopy and electrochemistry", J. Am. Chem. Soc., Vol. 109, pp. 3559-3568, 1987.
[21] J. D. Liao, M. C. Wang, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov, and M. Grunze, "Modification of alkanethiolate self-Assembled monolayers by free radical-dominant plasma", J. Phys. Chem. B, Vol. 106, pp. 77-84, 2002.
[22] P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self–assembled monolayers on gold and silver surfaces determines their ability to resist peotein adsorption", J. Phys. Chem. B, Vol. 102, pp. 426-436, 1998.
[23] F. Schreiber, "Structure and growth of self-assembling monolayers", Prog. Surf. Sci., Vol. 65, pp. 151-257, 2000.
[24] P. Fenter, A. Eberhardt, and P. Eisenberger, "Self-assembly of n-alkyl thiols as disulfides on Au(111)", Science, Vol. 266, pp. 1216-1218, 1994.
[25] P. E. Laibinis, G. M. Whiteside, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures an wetting properties of self assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au", J. Am. Chem. Soc., Vol. 113, pp. 7152-7167, 1991.
[26] B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, "Biomaterials science: An introduction to materials in medicine", Chap.2, Academic press, 1996.
[27] S. Sano, K. Kato, and Y. Ikada, "Introduction of functional groups onto the surface of polyethylene for protein immobilization", Biomaterials, Vol. 14, pp. 817-822, 1993.
[28] K. L. Carraway, and D. E. koshland, "Carbodiimide modification of proteins", Method. Enzymol., Vol. 25, pp. 616-623, 1972.
[29] R. A. Laursen, "The peptides", Vol. 4, Chap.6, Academic press, 1981.
[30] Y. Xia, X. M. Zhao, and G. M. Whitesides, "Pattern transfer: self-assembled monolayers as ultrathin resists", Microelectron Eng., Vol. 32, pp. 255-268, 1996.
[31] R. K. Smith, P. A. Lewis, and P. S. Weiss, "Patterning self-assembled monolayers", Prog. Surf. Sci., Vol. 75, pp. 1-68, 2004.
[32] T. Pompe, A. Fery, and S. Herminghaus, "Submicron contact printing on silicon using stamp pads", Langmuir, Vol. 15, pp. 2398-2401, 1999.
[33] J. F. Kunzler, "Silicone hydrogels for contact lens application", Trends Poly. Sci., Vol. 4, pp. 52-59, 1996.
[34] T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, "Diffusion of alkanethiols in PDMS and its implications on microcontact printing (mCP)", Langmuir, Vol. 21, pp. 622-632, 2005.
[35] E. Delamarche, H. Schmid, A. Bietsch, N. B. Larsen, H. Rothuizen, B. Michel, and H. Biebuyck, "Transport mechanisms of alkanethiols during microcontact printing on gold", J. Phys. Chem. B, Vol. 102, pp. 3324-3334, 1998.
[36] N. B. Larsen, H. Biebuyck, E. Delamarche, and B. Michel, "Order in microcontact printed self-Assembled monolayers", J. Am. Chem. Soc., Vol. 119, pp. 3017-3026, 1997.
[37] K. Seshadri, K. Froyd, A. N. Parikh, and D. L. Allara, "Electron-beam-induced damage in self-assembled monolayers", J. Phys. Chem., Vol. 100, pp. 15900-15909, 1996.
[38] M. Zharnikov, W. Geyer, A. Gölzhäuser, S. Frey, and M. Grunze, "Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface", Phys. Chem. Chem. Phys., Vol. 1, pp. 3163-3171, 1999.
[39] M. Zharnikov, S. Frey, K. Heister, and M. Grunze, "Modification of alkanethiolate monolayers by low energy electron irradiation: Dependence on the substrate material and on the length and isotopic composition of the alkyl chains", Langmuir, Vol. 16, pp. 2697-2705, 2000.
[40] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, and M. Grunze, "Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography", Appl. Phys. Lett., Vol. 75, pp. 2401-2403, 1999.
[41] P. E. Laibinis, and R. L. Graham, "X-ray damage to CF3CO2-terminated organic monolayers on Si/Au: Principal effect of electrons", Science, Vol. 254, pp. 981-983, 1991.
[42] M. Wirde, U. Gelius, T. Dunbar, and D. L. Allara, "Modification of self-assembled monolayers of alkanethiols on gold by ionizing radiation", Nucl. Instrum. Methods Phys. Res. B, Vol. 131, pp. 245-251, 1997.
[43] D. Zerulla, and T. Chasse, "X-ray induced damage of self-assembled alkanethiols on gold and indium phosphide", Langmuir, Vol. 15, pp. 5285-5294, 1999.
[44] T. Laiho, J. A. Leiro, and J. Lukkari, "XPS study of irradiation damage and different metal-sulfur bonds in dodecanethiol monolayers on gold and platinum surfaces", Appl. Surf. Sci., Vol. 212-213, pp. 525-529, 2003.
[45] 洪一弘, 李德輝, 殷廣鈐, 魏德新, 但唐諤, 柯陸詩, 陳建德, 曾金榮 and 莊東榮, "掃描式光電子能譜顯微儀簡介", 科學發展月刊, Vol. 29, pp. 21-28, 2000.
[46] 柯正浩, "同步幅射X光掃描式光電子能譜顯微儀", 物理雙月刊, Vol. 20, pp. 510-516, 1998.
[47] 洪一弘, 曾平忠 and 曾金榮, "U5球型光柵分光儀光束線的近況", 同步輻射研究中心簡訊, Vol. 43, pp. 17, 1999.
[48] 王兆恩 and 張正祥, "U5聚頻磁鐵介紹", 同步輻射研究中心簡訊, Vol. 37, pp. 12, 1997.
[49] 崔古鼎, "同步輻射研究中心簡介 ", 物理雙月刊, Vol. 20, pp. 607-612, 1998.
[50] 國家同步輻射研究中心, 同步加速器光源, 2005.
[51] J.-J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters, Gordon and Breach science, 1993.
[52] 陳家浩, "從光電效應到光電子顯微術", 物理雙月刊, Vol. 27, pp. 666-669, 2005.
[53] Y. C. Tyan, S. B. Jong, J. D. Liao, P. C. Liao, M. H. Yang, C. Y. Liu, R. Klauser, M. Himmelhaus, and M. Grunze, "Proteomic profiling of erythrocyte proteins by proteolytic digestion chip and identification using two-dimensional electrospray ionization tandem mass spectrometry", J. Proteome. Res., Vol. 4, pp. 748-757, 2005.
[54] J. D. Liao, S. P. Lin, and Y. T. Wu, "Dual properties of the deacetylated sites in chitosan for molecular immobilization and biofunctional effects", Biomacromolecules, Vol. 6, pp. 392-399, 2005.
[55] C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze, and M. Zharnikov, "Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: the role of the plasma composition", Langmuir, Vol. 20, pp. 10093-10099, 2004.
[56] M. C. Wang, J. D. Liao, C. C. Weng, Y. D. Wu, R. Klauser, S. Frey, K. Heister, M. Zharnikov, and M. Grunze, "The effect of the substrate on response of thioaromatic self-assembled monolayers to free radical-dominant plasma", J. Phys. Chem. B, Vol. 106, pp. 6220-6226, 2002.
[57] M. C. Wang, J. D. Liao, C. C. Weng, R. Klauser, A. Shaporenko, M. Grunze, and M. Zharnikov, "Modification of aliphatic monomolecular films by free radical dominant plasma: the effect of the alkyl chain length and the substrate", Langmuir, Vol. 19, pp. 9774-9780, 2003.
[58] A. V. Saprigin, C. W. Thomas, C. S. Dulcey, Jr. C. H. Patteson, and M. S. Spector, "Spectroscopic quantification of covalently immobilized oligonucleotides", Surf. Interface Anal., Vol. 37, pp. 24-32, 2005.
[59] E. Houng, F. Zhou, and L. Deng, "Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers", Langmuir, Vol. 16, pp. 3272-3280, 2000.
[60] P. E. Laibinis, and G. M. Whitesides, "w-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities", J. Am. Chem. Soc., Vol. 114, pp. 1990-1995, 1992.
[61] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H.Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, "Control of carrier density by self-assembled monolayers in organic field-effect transistors", Nat. Mater., Vol. 3, pp. 317-322, 2004.
[62] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and bonding of alkanethiolates on gold and silver surfaces: Implications for self-assembled monolayers", J. Am. Chem. Soc., Vol. 115, pp. 9389-9401, 1993.
[63] K. Heister, L. S. O. Johansson, M. Grunze, and M. Zharnikov, "A detailed analysis of the C 1s photoemission of n-alkanethiolate films on noble metal substrates", Surf. Sci., Vol. 529, pp. 36-46, 2003.
[64] K. Heister, M. Zharnikov, M. Grunze, and L. S. O. Johansson, "Adsorption of alkanethiols and biphenylthiols on Au and Ag substrates: A high-resolution X-ray photoelectron spectroscopy study", J. Phys. Chem. B, Vol. 105, pp. 4058-4061, 2001.
[65] K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman," Characterization of X-ray induced damage in alkanethiolate monolayers by high-resolution photoelectron spectroscopy", Langmuir, Vol. 17, pp. 8-11, 2001.
[66] D. A. Hutt, and G. J. Leggett, "Influence of adsorbate ordering on rates of UV photooxidation of self-assembled monolayers", J. Phys. Chem. B, Vol. 100, pp. 6657-6662, 1996.
[67] D. A. Hutt, E. Cooper, and G. J. Leggett, "Structure and mechanism of photooxidation of self-assembled monolayers of alkylthiols on silver studied by XPS and static SIMS", J. Phys. Chem. B, Vol. 102, pp. 174-184, 1998.
[68] 林熙翔, "電子束微影技術簡介", 機械工業雜誌, 第245期, pp. 97-105, 2003.
[69] C. Olsen, and P. A. Rowntree, "Bond-selective dissociation of alkanethiol based self-assembled monolayers adsorbed on gold substrates, using low-energy electron beams", J. Chem. Phys., Vol. 108, No. 9, pp. 3750-3764, 1998.
[70] A. S. Duwez, "Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review", J. Elec. Spec. Rel. Pheno., Vol. 134, pp. 97-138, 2004.
[71] M. Zharnikov, and M. Grunze, "Modification of thiol-derived self-assembling monolayers by electron and X-ray irradiation: Scientific and lithographic aspects" J. Vac. Sci. Technol. B, Vol. 20, pp. 1793-1807, 2002.
[72] H. U. Müller, M. Zharnikov, B. Völkel, A. Schertel, P. Harder, and M. Grunze, "Low-energy electron-induced damage in hexadecanethiolate monolayers", J. Phys. Chem. B, Vol. 102, pp. 7949-7959, 1998.
[73] N. Ballav, A. Shaporenko, A. Terfort, and M. Zharnikov, "A flexible approach to the fabrication of chemical gradients", Adv. Mater., Vol. 19, pp. 998-1000, 2007.
[74] G. P. Lopez, H. A. Biebuyck, and G. M. Whitesides, "Scanning electron microscopy can form images of patterns in self-assembled monolayers", Langmuir, Vol. 9, pp. 1513-1516, 1993.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw