進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200915273839
論文名稱(中文) Aurora-A基因5端非轉譯區的選擇性裁接之分析
論文名稱(英文) Characterization of the alternative splicing in Aurora-A gene 5’-untranslated region
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 97
學期 2
出版年 98
研究生(中文) 陳盈如
研究生(英文) Ying-ju Chen
電子信箱 s2696412@mail.ncku.edu.tw
學號 s2696412
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-洪良宜
指導教授-張文昌
口試委員-曾大千
中文關鍵字 5端非轉譯區  後轉錄調控 
英文關鍵字 post-transcriptional regulation  5'UTR  Aurora-A 
學科別分類
中文摘要 Aurora-A是一種受細胞週期調控表現的蛋白激酶。Aurora-A不正常的表現,會造成中心體增殖,細胞分裂時紡錘絲不正常聚集,染色體無法正常分配到兩個子細胞,最後導致腫瘤的形成。根據我們過去的研究指出,在大腸直腸癌細胞中,EGF可透過活化PI3K/Akt及MEK/ERK路徑,造成Aurora-A mRNA轉譯的增加,進而增加其蛋白表現量。在本論文中,我們確認了這個現象是具有專一性的;同時也證實了EGF並不會改變Aurora-A蛋白的穩定度。我們發現EGF會透過PI3K/Akt路徑去活化mTOR,進而增加Aurora-A蛋白的轉譯;至於MEK/ERK路徑在增加Aurora-A mRNA轉譯的角色,則有待進一步釐清。此外根據文獻報導,mRNA轉譯的調控主要與其5端或3端非轉譯區域的結構或功能有關。進一步分析Aurora-A mRNA的非轉譯區域,發現它的5端非轉譯區具有六種不同的isoforms,這是透過mRNA的選擇性剪接(alternative splicing)所造成的。我們發現,Aurora-A mRNA 5端非轉譯區域的exon 2可能是參與在EGF造成Aurora-A mRNA轉譯增加的調控;而exon 1則可能參與在其隨細胞週期而表現量改變的調控。所以我們認為不同Aurora-A 5’UTR的表現可能是具有組織特異性的。為了進一步探討在EGF刺激之下,造成具有exon 2的Aurora-A mRNA轉譯增加的機制,我們也尋找了可能調控Aurora-A mRNA 5’UTR的RNA結合蛋白。我們相信,若是能找出在癌細胞中,特定表現的Aurora-A mRNA 5端非轉譯區域的isoform,或是調控其轉譯增加的因子,便可應用當作專一性的標的,做為癌症的治療,而不會傷害到正常細胞。
英文摘要 Mitotic Aurora-A is an oncogene, which undergoes a cell
cycle-dependent regulation of its expression. Abnormal expression of Aurora-A can result in centrosomes amplification, aneuploidy and ultimately lead to tumor formation. In our previously results, EGF can increase the Aurora-A protein expression in human colorectal cancer cell lines in a translational regulatory manner. Based on the literatures reported, the 5’ untranslated regions (5’UTRs) of mRNAs plays important roles in controlling their translational efficiency. Interestingly, there are six different 5’UTR isoforms, which are resulting from the mRNA alternative splicing, of Aurora-A mRNA was reported. In this study, our result indicated that the exon 2 of Aurora-A mRNA 5’UTR plays an important role in the EGF-increased Aurora-A translational efficiency. In addition, these exon 2-containg isoforms of Aurora-A 5’UTR only repressed in cancer cells. On the other hand, the exon 1 participated in the cell cycle-dependent expression pattern of Aurora-A. Furthermore, these various isoforms of Aurora-A mRNA 5’UTR were expressed in a tissue-specific pattern. These results suggest that the expression of Aurora-A mRNA 5’UTR isoforms is under tightly regulated. Now, we are currently investigating the molecular mechanism that EGF-increased translational efficiency of exon 2-containg Aurora-A mRNA, and identifying its specific-interacting proteins.
論文目次 中文摘要............................................... I
英文摘要............................................... II
誌謝...................................................III
目錄.................................................... V
圖目錄................................................VIII
附錄目錄................................................IX
縮寫檢索表...............................................X

第一章 緒論……………………………………………………1
1-1. Aurora-A Kinase 2
1-2. Epidermal Growth Factor Receptor (EGFR) 4
1-3. mRNA 5’UTR在轉譯調控中的角色 5
1-4. Aurora-A mRNA 5’UTR 7
1-5. 研究動機 7
1-6. 研究目的 8

第二章 實驗材料………………………………………………9

第三章 實驗方法...................................16
3-1. 細胞株的培養 16
3-2. 全細胞液 (total cell lysate)的抽取 17
3-3. 分離萃取細胞質細胞液 18
3-4. 蛋白質濃度之測定 19
3-5. 西方點墨法 (Western blotting) 19
3-6. 質體DNA之建構 (plasmid construction) 23
3-7. 利用報導基因的分析 (reporter luciferase assay)
來觀察EGF對於Aurora-A 5’UTR活性的影響 26
3-8. 全量RNA的抽取 27
3-9. 反轉錄-聚合酶連鎖反應 (Reverse-transcription
Polymerase Chain Reaction) 28
3-10. 利用核糖體蛋白S6 免疫沉澱法 (ribosomal protein
S6 immunoprecipitation)觀察EGF對於Aurora-A
5’UTR轉譯的影響 30
3-11. 蛋白質降解分析 (degradation assay) 32
3-12. 生物素pull-down測定 (biotin pull-down assay) 32
3-13. 抽取質體DNA (plasmid DNA preparation) 35
3-14. 細胞同步化 (cell synchronization) 36
3-15. 細胞外轉譯活性測定(in vitro translation assay)37
3-16. 銀染 (silver staining ) 38
第四章 實驗結果....................................40
4-1. EGF造成Aurora-A轉譯的增加是具專一性的 40
4-2. EGF並不會改變Aurora-A蛋白的穩定度 40
4-3. PI3K/Akt與MEK/ERK可能是透過不同路徑造成
Aurora-A蛋白的轉譯增加 41
4-4. Aurora-A mRNA 5’UTR六個不同的同源異構 RNA
(isoforms)在癌細胞中的表現 42
4-5. Aurora-A mRNA exon 2在EGF增加Aurora-A蛋白質
轉譯調控的機制中扮演重要的角色 43
4-6. Aurora-A mRNA exon 1的表現會受細胞週期調控
(cell cycle-dependent) 45
4-7. Aurora-A mRNA exon 2在癌細胞中有過量表現的情形46
4-8. 總結 48

第五章 討論........................................49
第六章 參考文獻....................................54
附圖...............................................66
附錄…………………………………………………………… 79
自述...............................................89
參考文獻 1. Audic Y, Hartley RS: Post-transcriptional regulation in cancer. Biol Cell 2004, 96(7):479-498.
2. Mata J, Marguerat S, Bahler J: Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 2005, 30(9):506-514.
3. Zhang T, Kruys V, Huez G, Gueydan C: AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 2002, 30(Pt 6):952-958.
4. Wilusz CJ, Wilusz J: Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 2004, 20(10):491-497.
5. Dansako T, Kato K, Satoh J, Sekine M, Yoshida K, Shinmyo A: 5' Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J Biosci Bioeng 2003, 95(1):52-58.
6. Bischoff JR, Plowman GD: The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999, 9(11):454-459.
7. Giet R, Prigent C: Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 1999, 112 ( Pt 21):3591-3601.
8. Andrews PD, Knatko E, Moore WJ, Swedlow JR: Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 2003, 15(6):672-683.
9. Carmena M, Earnshaw WC: The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003, 4(11):842-854.
10. Chan CS, Botstein D: Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 1993, 135(3):677-691.
11. Glover DM, Leibowitz MH, McLean DA, Parry H: Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995, 81(1):95-105.
12. Ducat D, Zheng Y: Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res 2004, 301(1):60-67.
13. Dutertre S, Prigent C: Aurora-A overexpression leads to override of the microtubule-kinetochore attachment checkpoint. Mol Interv 2003, 3(3):127-130.
14. Marumoto T, Zhang D, Saya H: Aurora-A - a guardian of poles. Nat Rev Cancer 2005, 5(1):42-50.
15. Hachet V, Canard C, Gonczy P: Centrosomes promote timely mitotic entry in C. elegans embryos. Dev Cell 2007, 12(4):531-541.
16. Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N et al: Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 2002, 7(11):1173-1182.
17. Portier N, Audhya A, Maddox PS, Green RA, Dammermann A, Desai A, Oegema K: A microtubule-independent role for centrosomes and aurora a in nuclear envelope breakdown. Dev Cell 2007, 12(4):515-529.
18. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H: Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003, 114(5):585-598.
19. Anand S, Penrhyn-Lowe S, Venkitaraman AR: AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003, 3(1):51-62.
20. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H: Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 2003, 278(51):51786-51795.
21. Meraldi P, Honda R, Nigg EA: Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 2002, 21(4):483-492.
22. Zhang D, Hirota T, Marumoto T, Shimizu M, Kunitoku N, Sasayama T, Arima Y, Feng L, Suzuki M, Takeya M et al: Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 2004, 23(54):8720-8730.
23. Castro A, Arlot-Bonnemains Y, Vigneron S, Labbe JC, Prigent C, Lorca T: APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep 2002, 3(5):457-462.
24. Honda K, Mihara H, Kato Y, Yamaguchi A, Tanaka H, Yasuda H, Furukawa K, Urano T: Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 2000, 19(24):2812-2819.
25. Taguchi S, Honda K, Sugiura K, Yamaguchi A, Furukawa K, Urano T: Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett 2002, 519(1-3):59-65.
26. Littlepage LE, Wu H, Andresson T, Deanehan JK, Amundadottir LT, Ruderman JV: Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc Natl Acad Sci U S A 2002, 99(24):15440-15445.
27. Walter AO, Seghezzi W, Korver W, Sheung J, Lees E: The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 2000, 19(42):4906-4916.
28. Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV: Aurora A, meiosis and mitosis. Biol Cell 2004, 96(3):215-229.
29. Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA: Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell 2006, 11(2):147-157.
30. Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA: Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002, 158(4):617-623.
31. Pugacheva EN, Golemis EA: The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 2005, 7(10):937-946.
32. Satinover DL, Leach CA, Stukenberg PT, Brautigan DL: Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 2004, 101(23):8625-8630.
33. Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005, 20(2):237-249.
34. Trieselmann N, Armstrong S, Rauw J, Wilde A: Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci 2003, 116(Pt 23):4791-4798.
35. Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y: A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003, 5(3):242-248.
36. Chen SS, Chang PC, Cheng YW, Tang FM, Lin YS: Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J 2002, 21(17):4491-4499.
37. Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ: Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 2004, 279(50):52175-52182.
38. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C et al: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998, 17(11):3052-3065.
39. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998, 20(2):189-193.
40. Sen S, Zhou H, White RA: A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 1997, 14(18):2195-2200.
41. Miyoshi Y, Iwao K, Egawa C, Noguchi S: Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 2001, 92(3):370-373.
42. Meraldi P, Honda R, Nigg EA: Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 2004, 14(1):29-36.
43. Giet R, Petretti C, Prigent C: Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 2005, 15(5):241-250.
44. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J et al: Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984, 309(5967):418-425.
45. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U et al: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230(4730):1132-1139.
46. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 1985, 229(4717):974-976.
47. Semba K, Kamata N, Toyoshima K, Yamamoto T: A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci U S A 1985, 82(19):6497-6501.
48. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA: Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A 1989, 86(23):9193-9197.
49. Plowman GD, Culouscou JM, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M: Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci U S A 1993, 90(5):1746-1750.
50. Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000, 19(13):3159-3167.
51. Yarden Y: The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001, 37 Suppl 4:S3-8.
52. Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001, 2(2):127-137.
53. Ciardiello F, Tortora G: A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001, 7(10):2958-2970.
54. Venook AP: Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer 2005, 103(12):2435-2446.
55. Stadler WM: Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 2005, 104(11):2323-2333.
56. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366(1):2-16.
57. Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995, 19(3):183-232.
58. Ozgul C, Karaoz E, Erdogan D, Dursun A: Expression of epidermal growth factor receptor in normal colonic mucosa and in adenocarcinomas of the colon. Acta Physiol Hung 1997, 85(2):121-128.
59. Messa C, Russo F, Caruso MG, Di Leo A: EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol 1998, 37(3):285-289.
60. Gray NK, Wickens M: Control of translation initiation in animals. Annu Rev Cell Dev Biol 1998, 14:399-458.
61. Mignone F, Gissi C, Liuni S, Pesole G: Untranslated regions of mRNAs. Genome Biol 2002, 3(3):REVIEWS0004.
62. Wilkie GS, Dickson KS, Gray NK: Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. Trends Biochem Sci 2003, 28(4):182-188.
63. Kozak M: An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 1991, 115(4):887-903.
64. Willis AE: Translational control of growth factor and proto-oncogene expression. Int J Biochem Cell Biol 1999, 31(1):73-86.
65. Dua K, Williams TM, Beretta L: Translational control of the proteome: relevance to cancer. Proteomics 2001, 1(10):1191-1199.
66. Clemens MJ: Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004, 23(18):3180-3188.
67. Pickering BM, Willis AE: The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 2005, 16(1):39-47.
68. Billack B, Monteiro AN: BRCA1 in breast and ovarian cancer predisposition. Cancer Lett 2005, 227(1):1-7.
69. Sobczak K, Krzyzosiak WJ: Structural determinants of BRCA1 translational regulation. J Biol Chem 2002, 277(19):17349-17358.
70. Shin SO, Lee KH, Kim JH, Baek SH, Park JW, Gabrielson EW, Kwon TK: Alternative splicing in 5'-untranslational region of STK-15 gene, encoding centrosome associated kinase, in breast cancer cell lines. Exp Mol Med 2000, 32(4):193-196.
71. Goldstein NS, Armin M: Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 2001, 92(5):1331-1346.
72. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C et al: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004, 351(4):337-345.
73. Warner SL, Bearss DJ, Han H, Von Hoff DD: Targeting Aurora-2 kinase in cancer. Mol Cancer Ther 2003, 2(6):589-595.
74. Wool IG: The structure and function of eukaryotic ribosomes. Annu Rev Biochem 1979, 48:719-754.
75. Littlepage LE, Ruderman JV: Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 2002, 16(17):2274-2285.
76. Lim SK, Gopalan G: Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 2007, 26(46):6593-6603.
77. Faivre S, Kroemer G, Raymond E: Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006, 5(8):671-688.
78. Shaw RJ, Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441(7092):424-430.
79. Jiang BH, Liu LZ: Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008, 11(3):63-76.
80. Dutertre S, Descamps S, Prigent C: On the role of aurora-A in centrosome function. Oncogene 2002, 21(40):6175-6183.
81. Ma XM, Blenis J: Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009, 10(5):307-318.
82. Monick MM, Powers LS, Gross TJ, Flaherty DM, Barrett CW, Hunninghake GW: Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1. J Immunol 2006, 177(3):1636-1645.
83. Habelhah H, Shah K, Huang L, Ostareck-Lederer A, Burlingame AL, Shokat KM, Hentze MW, Ronai Z: ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 2001, 3(3):325-330.
84. Jansen M, de Moor CH, Sussenbach JS, van den Brande JL: Translational control of gene expression. Pediatr Res 1995, 37(6):681-686.
85. Kochetov AV, Ischenko IV, Vorobiev DG, Kel AE, Babenko VN, Kisselev LL, Kolchanov NA: Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett 1998, 440(3):351-355.
86. Decker CJ, Parker R: Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol 1995, 7(3):386-392.
87. Harris CE, Boden RA, Astell CR: A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. J Virol 1999, 73(1):72-80.
88. Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G: SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001, 20(19):5443-5452.
89. Liu HM, Aizaki H, Choi KS, Machida K, Ou JJ, Lai MM: SYNCRIP (synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor involved in hepatitis C virus RNA replication. Virology 2009, 386(2):249-256.
90. Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K: SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J Biol Chem 2000, 275(13):9823-9831.
91. Grosset C, Chen CY, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu AB: A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 2000, 103(1):29-40.
92. Cho S, Park SM, Kim TD, Kim JH, Kim KT, Jang SK: BiP internal ribosomal entry site activity is controlled by heat-induced interaction of NSAP1. Mol Cell Biol 2007, 27(1):368-383.
93. Shen Q, Fan L, Newburger PE: Nuclease sensitive element binding protein 1 associates with the selenocysteine insertion sequence and functions in mammalian selenoprotein translation. J Cell Physiol 2006, 207(3):775-783.
94. Evdokimova VM, Kovrigina EA, Nashchekin DV, Davydova EK, Hershey JW, Ovchinnikov LP: The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 1998, 273(6):3574-3581.
95. Sommerville J: Activities of cold-shock domain proteins in translation control. Bioessays 1999, 21(4):319-325.
96. Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M, Karin M: Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 2000, 14(10):1236-1248.
97. Ashizuka M, Fukuda T, Nakamura T, Shirasuna K, Iwai K, Izumi H, Kohno K, Kuwano M, Uchiumi T: Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2. Mol Cell Biol 2002, 22(18):6375-6383.
98. Evdokimova V, Ovchinnikov LP, Sorensen PH: Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle 2006, 5(11):1143-1147.
99. Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A, Buchmeier S, Wahle E, Huttelmaier S: Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 2009, 15(1):104-115.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2029-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw