進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200915265881
論文名稱(中文) Wild-type p53在Eps8所調控的癌細胞化療藥物敏感性中扮演必要性的角色
論文名稱(英文) Wild-type p53 is required for Eps8-mediated chemoresistance in cancer cells
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 97
學期 2
出版年 98
研究生(中文) 鄭瑋涵
研究生(英文) Wei-Han Cheng
電子信箱 loriwendyld@hotmail.com
學號 s2696105
學位類別 碩士
語文別 英文
論文頁數 59頁
口試委員 口試委員-馬明琪
指導教授-呂增宏
口試委員-王憶卿
口試委員-賴明德
中文關鍵字  
英文關鍵字 p53  cisplatin  Eps8  colon cancer 
學科別分類
中文摘要 Eps8 (EGF receptor pathway substrate No.8) 已被證實參與在EGF所引發的細胞分裂及腫瘤生成當中。實驗室之前的研究指出:在Eps8 knockdown的子宮頸癌細胞---HeLa 及SiHa 中,抑制腫瘤的蛋白---p53表現量有上升情形;同時,Src 及AKT在這些knockdown細胞中也下降,並造成細胞生長速率下降且增加細胞對化療藥物---cisplatin及paclitaxel的敏感性。因此接下來的研究中,我們想釐清在癌症細胞中,Eps8所調控的抗藥性機轉當中,wild-type p53及Src、AKT的活性何者在其中扮演必要性的角色。首先,我們發現在表現wild-type p53的大腸癌細胞---HCT116當中,Eps8在細胞生長及對cisplatin的抗藥性中扮演重要的角色。然而,在表現mutant p53的口腔上皮腫瘤細胞---HSC3中Eps8表現下降也會降低細胞的生長速率;相反的,卻會降低mutated p53的表現並且不會影響HSC3細胞對cisplatin的藥物敏感性。除此之外,在Eps8-attenuated HSC3細胞中Src和AKT的活性也有下降的趨勢。因此由以上實驗結果證明Eps8對細胞抗藥性的調控主要是需要wild-type p53的參與,而不是藉由AKT及Src的調控。另外,我們利用單細胞電泳法 (comet assay) 的實驗觀察Eps8是否會影響DNA的完整性。實驗結果顯示在cisplatin處理下的HCT116細胞中,將Eps8 knockdown會降低細胞DNA受損後修復的能力。因此也提供了另一個Eps8會增加細胞抗藥性的可能調控路徑之一。
英文摘要 Eps8 has been demonstrated to participate in EGF-induced mitogenesis and tumorigenesis. Our previous study indicated that tumor suppressor protein p53 was up-regulated in Eps8 knockdown HeLa and SiHa cervical cancer cells. Concurrent with p53 up-regulation, the activity of Src and AKT activity was also reduced in these cells, which exhibited decreased cell proliferation and increased chemosensitivity to cisplatin and paclitaxel. In this study, we want to clarify whether wild type p53 and/or activity of Src and AKT is required for Eps8-mediated drug resistance in human cancer cells. First, we found that in wild-type p53 expressed colon cancer cell, i.e. HCT116, Eps8 is required for the cell proliferation and resistance to the cytotoxicity of cisplatin. By contrast, while the cell proliferation of HSC3 cells, which contains mutated p53, was reduced by Eps8 attenuation, the survival rate of these cells to cisplatin treatment was unaltered. In addition, the activity of Src and AKT was also reduced in Eps8 attenuated HSC3 cells. These data indicated that Eps8-mediated chemoresistance required the presence of wild type p53 but not Src, nor AKT. In addition, the results of single- electrophoresis, which detects DNA strand breaks showed that Eps8 attenuation in HCT116 cell could inhibit the ability of DNA damage repair under cisplatin treatment, which revealed another possible mechanism participating in Eps8-mediated drug resistance.
論文目次 Abstract ------------------------------------------------ 3
中文摘要 ------------------------------------------------ 5
Acknowledgement ----------------------------------------- 7
Content ------------------------------------------------- 8
Introduction -------------------------------------------- 9
Materials and methods ---------------------------------- 15
Results ------------------------------------------------ 23
Discussion --------------------------------------------- 30
Figures ------------------------------------------------ 37
Reference ---------------------------------------------- 50
Curriculum vitae --------------------------------------- 59
參考文獻 Appella, E., and Anderson, C. W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. European journal of biochemistry / FEBS 268, 2764-2772.
Biesova, Z., Piccoli, C., and Wong, W. T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.
Cecchini, S., Masson, C., La Madeleine, C., Huels, M. A., Sanche, L., Wagner, J. R., and Hunting, D. J. (2005). Interstrand cross-link induction by UV radiation in bromodeoxyuridine-substituted DNA: dependence on DNA conformation. Biochemistry 44, 16957-16966.
Chen, Y. J., Shen, M. R., Chen, Y. J., Maa, M. C., and Leu, T. H. (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Molecular cancer therapeutics 7, 1376-1385.
Delmastro, D. A., Li, J., Vaisman, A., Solle, M., and Chaney, S. G. (1997). D NA damage inducible-gene expression following platinum treatment in human ovarian carcinoma cell lines. Cancer chemotherapy and pharmacology 39, 245-253.
Demarcq, C., Bunch, R. T., Creswell, D., and Eastman, A. (1994). The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ 5, 983-993.
Disanza, A., Carlier, M. F., Stradal, T. E., Didry, D., Frittoli, E., Confalonieri, S., Croce, A., Wehland, J., Di Fiore, P. P., and Scita, G. (2004). Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature cell biology 6, 1180-1188.
Donahue, B. A., Augot, M., Bellon, S. F., Treiber, D. K., Toney, J. H., Lippard, S. J., and Essigmann, J. M. (1990). Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 29, 5872-5880.
Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W. T., and Di Fiore, P. P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. The EMBO journal 12, 3799-3808.
Ferry, K. V., Hamilton, T. C., and Johnson, S. W. (2000). Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochemical pharmacology 60, 1305-1313.
Fink, D., Aebi, S., and Howell, S. B. (1998). The role of DNA mismatch repair in drug resistance. Clin Cancer Res 4, 1-6.
Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H., and Leadon, S. A. (1998). BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science (New York, NY 281, 1009-1012.
Hayakawa, J., Ohmichi, M., Kurachi, H., Kanda, Y., Hisamoto, K., Nishio, Y., Adachi, K., Tasaka, K., Kanzaki, T., and Murata, Y. (2000). Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer research 60, 5988-5994.
Helton, E. S., and Chen, X. (2007). p53 modulation of the DNA damage response. Journal of cellular biochemistry 100, 883-896.
Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science (New York, NY 253, 49-53.
Jamieson, E. R., and Lippard, S. J. (1999). Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chemical reviews 99, 2467-2498.
Karlsson, T., Songyang, Z., Landgren, E., Lavergne, C., Di Fiore, P. P., Anafi, M., Pawson, T., Cantley, L. C., Claesson-Welsh, L., and Welsh, M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483.
Lanzetti, L., Rybin, V., Malabarba, M. G., Christoforidis, S., Scita, G., Zerial, M., and Di Fiore, P. P. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374-377.
Maa, M. C., Hsieh, C. Y., and Leu, T. H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112.
Maa, M. C., Lai, J. R., Lin, R. W., and Leu, T. H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochimica et biophysica acta 1450, 341-351.
Maa, M. C., Lee, J. C., Chen, Y. J., Chen, Y. J., Lee, Y. C., Wang, S. T., Huang, C. C., Chow, N. H., and Leu, T. H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. The Journal of biological chemistry 282, 19399-19409.
Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G., and Di Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Molecular and cellular biology 15, 3805-3812.
Michael, D., and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin system. Seminars in cancer biology 13, 49-58.
Micheau, O., Solary, E., Hammann, A., Martin, F., and Dimanche-Boitrel, M. T. (1997). Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. Journal of the National Cancer Institute 89, 783-789.
Mitsuuchi, Y., Johnson, S. W., Selvakumaran, M., Williams, S. J., Hamilton, T. C., and Testa, J. R. (2000). The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer research 60, 5390-5394.
Neckers, L. (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends in molecular medicine 8, S55-61.
O'Connor, P. M., and Fan, S. (1996). DNA damage checkpoints: implications for cancer therapy. Progress in cell cycle research 2, 165-173.
Olive, P. L. (1999). DNA damage and repair in individual cells: applications of the comet assay in radiobiology. International journal of radiation biology 75, 395-405.
Peritz, A., al-Baker, S., Vollano, J. F., Schurig, J. E., Bradner, W. T., and Dabrowiak, J. C. (1990). Antitumor and DNA-binding properties of a group of oligomeric complexes of Pt(II) and Pt(IV). Journal of medicinal chemistry 33, 2184-2188.
Persons, D. L., Yazlovitskaya, E. M., and Pelling, J. C. (2000). Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. The Journal of biological chemistry 275, 35778-35785.
Roemer, K. (1999). Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biological chemistry 380, 879-887.
Roos, W. P., and Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in molecular medicine 12, 440-450.
Schiffman, M. H., and Brinton, L. A. (1995). The epidemiology of cervical carcinogenesis. Cancer 76, 1888-1901.
Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.
Sengupta, S., and Harris, C. C. (2005). p53: traffic cop at the crossroads of DNA repair and recombination. Nature reviews 6, 44-55.
Sheibani, N., Jennerwein, M. M., and Eastman, A. (1989). DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): host cell reactivation of damaged plasmid DNA. Biochemistry 28, 3120-3124.
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & development 14, 289-300.
Shu, K. X., Li, B., and Wu, L. X. (2007). The p53 network: p53 and its downstream genes. Colloids and surfaces 55, 10-18.
Siddik, Z. H. (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265-7279.
Siddik, Z. H., Mims, B., Lozano, G., and Thai, G. (1998). Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer research 58, 698-703.
Smith, M. L., Kontny, H. U., Bortnick, R., and Fornace, A. J., Jr. (1997). The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Experimental cell research 230, 61-68.
Strano, S., Dell'Orso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A., and Blandino, G. (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212-2219.
Tang, D., Wu, D., Hirao, A., Lahti, J. M., Liu, L., Mazza, B., Kidd, V. J., Mak, T. W., and Ingram, A. J. (2002). ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. The Journal of biological chemistry 277, 12710-12717.
Toyooka, T., and Ibuki, Y. (2009). Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair. Cancer research 69, 3492-3500.
Tsai, C. M., Yu, D., Chang, K. T., Wu, L. H., Perng, R. P., Ibrahim, N. K., and Hung, M. C. (1995). Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. Journal of the National Cancer Institute 87, 682-684.
Tsutsumi, S., and Neckers, L. (2007). Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer science 98, 1536-1539.
Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.
Vousden, K. H. (2005). Apoptosis. p53 and PUMA: a deadly duo. Science (New York, NY 309, 1685-1686.
Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., Snijders, P. J., Peto, J., Meijer, C. J., and Munoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of pathology 189, 12-19.
Wang, D., and Lippard, S. J. (2005). Cellular processing of platinum anticancer drugs. Nature reviews 4, 307-320.
Wong, W. T., Carlomagno, F., Druck, T., Barletta, C., Croce, C. M., Huebner, K., Kraus, M. H., and Di Fiore, P. P. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.
Xu, Y. (2006). DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nature reviews 6, 261-270.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2029-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw