進階搜尋


 
系統識別號 U0026-0812200915264866
論文名稱(中文) 擴散型晶圓級封裝之翹曲研究
論文名稱(英文) Warpage Simulation of Fan-Out Wafer Level Chip Scale Package
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 鄧上軒
研究生(英文) Shang-Shiuan Deng
電子信箱 n1696110@mail.ncku.edu.tw
學號 n1696110
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-黃聖杰
口試委員-李輝煌
口試委員-黃登淵
中文關鍵字 晶圓級封裝  翹曲  殘留應力  熱膨脹係數  P-V-T-C關係式  固化反應 
英文關鍵字 Wafer level packaging  P-V-T-C equation  IC package  warpage  cure shrinkage  Mold Filling Analysis 
學科別分類
中文摘要 半導體封裝技術中一個重要的發展方向為晶圓級封裝(wafer level packaging﹔WLP)。晶圓級封裝具有覆晶之形態,採用薄膜重分佈(thin-film redistribution)技術佈線,接著利用凸塊或錫球與印刷電路板直接相連。和一般打線之球柵陣列(wirebond BGA)封裝相比,晶圓級封裝具有較佳之電性、較低的電力消耗、及較小之元件尺寸等優點。
隨著半導體元件輕薄短小的趨勢,在封裝製程中所產生的翹曲(warpage)問題也日益受到重視。以往研究中,大部分均認為造成IC構裝元件翹曲的主要原因為構成材料之熱膨脹係數不同所造成的不均勻體積收縮,卻因此忽略了環氧樹脂(EMC)本身固化收縮的材料特性,因而造成利用電腦模擬分析時,容易低估成品翹曲量。本文將同時考量環氧樹脂之固化效應與溫度效應所造成的體積收縮,以建立一套分析封裝體翹曲的分析方法。在研究中用來描述環氧樹脂行為的關係式為P-V-T-C關係式,也就是將環氧樹脂因固化效應所造成的體積收縮行為表示成壓力(pressure)、體積(volume)、溫度(temperature)、熟化率(degree of cure)相關之方程式。而溫度效應所造成的環氧樹脂體積收縮量則考慮是由於構成封裝體的材料之熱膨脹係數不同所造成。
在本文的最後則經由實際的工程案例來加以驗證所建立之分析方法的可行度,經由比對驗証實驗的結果與模擬分析的結果,証實本文所建立的翹曲分析方法不僅具有經濟效益,亦有相當不錯的準確度。
英文摘要 Wafer level packaging is an important development trend for IC package design. The fan-out wafer level package discussed here has the flip chip form which uses thin-film redistribute then uses solder bump to connect the package to the printed wiring board directly. Liquid compound was used for the encapsulation process. Comparing with wire-bond BGA, the fan-out wafer level package has better electric properties, lower power consumption, and smaller package size.
Warpage problem plays an important role in IC encapsulation processes. Previous researchers had focused on warpage analyses with temperature changes between constituent materials and neglected the cure shrinkage effects. However, more and more studies indicate that prediction of warpage according to CTE (Coefficient of Thermal Expansion) was not able to accurately predict the amount of warpage in IC packaging. This paper used mold filling simulation and predicted the amount of warpage considering both thermal and cure induced shrinkage. The liquid compound properties were obtained by various techniques: cure kinetics by differential scanning calorimeter (DSC), cure induced shrinkage by P-V-T-C testing machine. These experimental data were used to formulate the P-V-T-C equation.
The P-V-T-C equation was successfully implemented and verified that warpage was governed by both thermal shrinkage and cure shrinkage. The amount of warpage after molding could be accurately predicted with this methodology. The simulation results showed that cure shrinkage of liquid compound was the dominant factor for package warpage after encapsulation. Even after post mold cure, the amount of warpage was still significant.
論文目次 中文摘要 I
Abstract II
誌謝 IV
表目錄 VII
符號說明 XI
第一章 緒 論 1
1-1 晶圓級封裝製程簡介 2
1-2 收縮與翹曲現象 9
1-3 研究目的 11
1-4 文獻回顧 13
1-5 本文架構 20
第二章 理論分析 21
2-1 模流充填理論 22
2-2 黏度本質方程式 26
2-3 量測熟化反應速率之方式 29
2-4 固化反應動力方程式 32
2-5 P-V-T-C關係式 34
2-6 應力應變統馭方程式 41
2-6-1 固化收縮理論模式 41
2-6-2 應力應變關係式 42
第三章 翹曲分析 53
3-1 建立有限元素模型 54
3-2 模流分析 64
3-3 翹曲分析流程 69
3-3-1 基本假設 69
3-3-2設定邊界條件 70
3-3-3考慮固化收縮效應與降溫收縮效應之翹曲分析 71
3-4 樣品量測驗證 79
第四章 結論與展望 82
4-1 結論 82
4-2 展望 84
參考文獻 i
索引 x
自述 …xv
參考文獻 [1] K. Oota and K. Shigeno, “Development of Molding Compound for BGA,” 45th Electronic Component Conference, pp. 78-85, 1995.
[2] H.H. Chiang, C. A. Hieber and K. K. Wang, “A Unified Simulation of the Filling and Postfilling Stages in Injection Molding, Part I: Formulation,” Polymer Engineering and Science, vol. 116, 1991.
[3] U. F. Gonzalez, Shen and C. Cohen, “Rheological Characteristic of Fast-Reaction Thermosets throught Spiral Flow Experiments,” Polymer Engineering and Science, vol. 32, pp. 172~184, 1992.
[4] L. S. Turng and V. W. Wang, “On the Simulation of Microelectronic Encapsulation with Epoxy Molding Compound,” Journal of Reinforced Plastic and Composites, vol. 12, pp. 506~519, 1993.
[5] L. T. Nguyen, “Reactive Flow Simulation in Transfer Molding of IC Packages,” 43rd Electronic Components Conference, pp. 375~390, 1993.
[6] W. B. Young, “Three Dimensional Nonisothermal Mold Filling Simulations in Resin Transfer Molding,” Polymer Composites, vol. 15, pp. 118~127, 1994.
[7] M. K. Kang, “Simulation of Mold Filling Process During Resin Transfer Molding,” Journal of Material Process and Manufacturing Science, vol. 3, pp. 297~313, 1995.
[8] Chang, R.Y., Yang, W.H., Hwang, S.J., and Su. F, “Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process,” IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 200~209, 2004.
[9] A. C. Loos and G. S. Springer, “Curing of the Epoxy Matrix Composites,” Journal of Composite Materials, pp. 135~169, 1983.
[10] G. S. Springer, “Resin Flow During the Curing of Fiber Reinforced Composites,” Journal of Composite Materials, vol.16, pp. 400~410, 1982.
[11] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, vol. 26, pp. 243~254, 1986.
[12] Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Hwang, “Study of P-V-T-C Relation of EMC,” ASME Journal of Electronic Packaging, vol. 124, pp. 371~373, 2002.
[13] S. Timoshenko, “Analysis of Bi-Material Thermostats,” Journal of Optimum Soc. Am, vol. 11, pp. 233~255, 1925.
[14] D. R. Olsen and H. M. Berg, “Properties of Die Bond Alloys Relating to Thermal Fatigue,” IEEE Components, Hybrids and Manufacturing Technology, vol. 12, pp. 257~263, 1979.
[15] T. Y. Pan and Y. H. Pao, “Deformation in Multilayer Stacked Assemblies,” ASME Journal of Electronic Packaging, vol. 112, pp. 30~34, 1990.
[16] P. M. Hall, “Thermal Expansivity and Thermal Stress in Multilayered Structures,” Thermal Stresses and Strain in Microelectronics Packaging, edited by J.H. Lau, Van Nostrand Reinhold, pp. 79~94, 1993.
[17] S. W. Lee, “Effect of Encapsulation Volume on the Coplanarity of Plastic Ball Grid Array Package,” The First Asia-Pacific Conference on Material and Processes in IC Encapsulation, pp. 17-1~17-4, 1996.
[18] E. Suhir, “Predicted Residual Bow of Thin Plastic Packages of Integrated Circuit Devices,” ASME Journal of Electronic Packaging, vol. 114, pp. 467~470, 1992.
[19] E. Suhir and L. T. Manzione, “Predicted Bow of Plastic Packages Due to the Nonuniform Through-Thickness Distribution of Temperature,” ASME Journal of Electronic Packaging, vol. 114, pp. 329~335, 1992.
[20] ST. Jacques, M., “An Analysis of Thermal Warpage in Injection Molded Flat Parts Due to Unbalanced Cooling,” Polymer Engineering Science, vol. 22, pp. 241~247, 1982.
[21] S. Okikawa, M. Sakimoto, M. Tanaka, T. Sato, T. Toya and Y. Hara, ”Stress Analysis of Passivation Film Crack for Plastic Molded LSI Caused by Thermal Stresses,” International Symposium Testing and Failure Analysis, pp. 275~280, 1983.
[22] A. Nishimura, “Life Estimation for IC Plastic Packages under Temperature Cycling Based on Fracture Mechanics,” IEEE Components, Hybrids and Manufacturing Technology, vol. 12, pp. 637~642, 1987.
[23] K. K. Tamma, B. L. Dowler and S. B. Railkar, “Computer Aided Application to Injection Molding: Transfinite / Finite Element Thermal Stress Response Formulations,” Polymer Engineering and Science, vol. 28, pp. 421~428, 1988.
[24] L. S. Chen and B. C. Cheng, “Warpage of Thin Plastic Packages,” The First Asia-Pacific Conference on Materials and Processes in IC Encapsulation, March 18-19, Hsinchu Taiwan, pp. 3-0~3-22, 1996.
[25] Xinyu Dou, “Instability Analysis for Ultra Thin Quad Flat Pack,” ASME Advanced in Electronic Package, vol. 1, pp. 1033~1039, 1997.
[26] T. S. Yeung and M. F. Yuen, “Warpage of Plastic IC Packages as a Function of Processing Conditions,” ASME Journal of Electronic Packaging, vol. 123, pp. 268-272, 2001.
[27] C. G. Kessel, S. Gee and J. Murphy, “The Quality of Die Attachment and its Relationship to Stresses and Vertical Die Cracking,” IEEE Components, Hybrids and Manufacturing Technology, vol. 6, pp. 410~420, 1983.
[28] B. Natarajan and B. Bhattacharyya, “Die Surface Stresses in a Molded Plastic Package,” 36th Electronic Component Conference, pp. 540~551, 1986.
[29] T. Matsouka, J. I. Takabatake, A. Koiwai, Y. Inoue, S. Yamamoto and H. Takahashi, “Integrated Simulation to Predict Warpage of Injection Molded Parts,” Polymer Engineering and Science, vol. 31, pp. 1043~1050, 1991.
[30] S. F. Walsh, “Shrinkage and Warpage Prediction for Injection Molded Components,” Journal of Reinforced Plastics and Composites, vol. 12, pp. 769~777, 1993.
[31] L. Yip and A. Hamzehdoost, “Package Warpage Evaluation for High Performance PQFP,” IEEE Electronic Components and Technology Conference, pp. 229-233, 1995.
[32] Matsuki Yamamoto and Yoshihiro Matsumura, “Flow Analysis of IC Encapsulation Resin in the Molding Process,” ASME Advanced in Electronic Package, vol. 1, pp. 269~275, 1997.
[33] K. Oota and M. Saka, “Cure shrinkage Analysis of Epoxy Molding Compound,” Polymer Engineer and Science, vol. 41, pp. 1373-1379, 2001.
[34] K. S. Kim and H. T. Hahn, “Residual Stress Development During Processing of Graphic/Epoxy Composites,” Composites Science and Technology, vol. 36, pp. 121~132, 1989.
[35] G. Kelly, C. Lyden, W. Lawton and J. barrett, “Accurate Prediction of PQFP Warpage,” Electronic Components and Technology Conference, pp. 102-105, 1994.
[36] G. Kelly, C. Lyden, W. Lawton, J. barrett, A. Saboui, H. Page and J. B. Peters, “Importance of Molding Compound Chemical Shrinkage in the Stress an Warpage Analysis of PQFP’s,” IEEE Transactions on Components and Packaging Technologies, vol. 19, pp. 296-300, 1996.
[37] W. C. Bushko and V. K. Stokes, “The Effects of Differential Mold-Surface Temperatures on the Warpage of Packed Injection-Molded Parts,” ANTEC, pp. 506~512, 1994.
[38] R. C. Dunne and S. K. Sitaraman, “Process Modeling for Sequential Build-up of Multi-Layered Structures,” in Proc. 48th Electronic Components Technology Conference, pp. 351-361, 1998.
[39] Jianjun Wang and Sheng Liu, “Sequential Processing Mechanics Modeling for a Model IC Package,” IEEE Transactions on Components and Packaging Technologies, vol. 20, pp. 335-342, 1997.
[40] Y. Miyano, M. Shimbo and T. Kunio, “Residual Stresses and Warp Generated by One-side Quench of an Epoxy-resin Beam,” Experimental Mechanics, vol. 24, pp. 75~80, 1984.
[41] T. S. Yeung and M. M. F. Yuen, “Warpage of IC Packages,” The First Asia-Pacific Conference on Materials and Processes in IC Encapsulation, pp. 4-1~4-10, 1996.
[42] J. H. Park, J. K. Kim, M. M. F. Yuen, S. W. R. Lee, P. Tong and P. C. H. Chan, “Thermal Stress Analysis of a PQFP Moulding Processes: Comparison of Viscoelastic and Elastic Models,” Key Engineering Materials, vol. 145, pp. 1127~1132, 1998.
[43] J. Wang, Z. Qian and S. Liu, “Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Molding Technique,” ASME Journal of Electronic Packaging, vol. 120, pp. 309~313, 1998.
[44] L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials,” Journal of Electronic Packaging, 124, 97-105, (2002).
[45] D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers, X.J. Fan, “Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers,” Proceedings of Electronic Components and Technology Conference, 98-105 (2004).
[46] K.M.B. Jansen, L. Wang, D.G. Yang, C. van’t Hof, L.J. Ernst, H.J.L. Bressers and G.Q. Zhang “Constitutive Modeling of Moulding Compounds,” Proceedings of Electronic Components and Technology Conference, 890-894 (2004).
[47] Yang Rao, S.H. Shi, and C.P. Wong, “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGY, Vol. 23, No.3 (2000).
[48] Zhuqing Zhang, Lianhua Fan, Suresh K. Sitaraman, and C.P. Wong, “Four-Laser Bending Beam Measurements and FEM Modeling of Underfill Induced Wafer Warpage,” Electronic Components and Technology Conference, pp747-753 (2004).
[49] Quach, A. and R. Simha, “Pressure-Volume-Temperature Properties and transition of Amorphous Polymers ; Polystyrene and Poly (orthomethylstyrene),” Journal of Applied Physicals, 42, 4592-4605 (1971).
[50] Zoller, P. Bolli, V. Pahud, and H. Ackermann, “Apparatus for measuring pressure-volume-temperature relationships of polymers” Review of Scientific Instruments, 45, 948-952 (1976).
[51] Nishimura, T. and Y. Nakagawa, “Analysis of stress due to shrinkage in a hardening process of liquid epoxy resin,” Heat Transfer-Asian Research, 31, 194-211 (2002).
[52] S. J. Hwang, and Y. S. Chang, “Isobaric Cure Shrinkage Behaviors of Epoxy Molding Compound in Isothermal State,” Journal of Polymer Science: Part B: Polymer Physics, 43, 2392-2398 (2005).
[53] S. J. Hwang, and Y. S. Chang, “P-V-T-C equation for epoxy molding compound,” IEEE Transactions on Components and Packaging Technologies, 29, 112-117 (2006).
[54] S. J. Hwang and L. C. Hong, “Study of Warpage Due to P-V-T-C Relation of EMC in IC Packaging,” IEEE Transactions on Components and Packaging Technologies, 27, 291-295 (2004).
[55] H. H. Chiang, K. Himasekhar, N. Santhanam and K. K. Wang, “Integrated Simulation of Fluid Flow and Heat Transfer in Injection Molding for the Prediction of Shrinkage and Warpage,” Journal of Engineering Material and Technologies, vol. 115, pp. 37~47, 1993.
[56] J. M. Castro, C. W. Macosko, “Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems,” SPE Tech. Paper, Vol. 26, pp. 434~438, 1980.
[57] M. R. Kamal, “Kinetics and Thermal Characterization of Thermoset Cure,” Polymer Engineering and Science, vol. 13, 1973.
[58] R. B. Prime, “Differential Scanning Calorimetry of the Epoxy Cure Reaction,” Polymer Engineering and Science, vol. 13, 1973.
[59] K. Dusek and M. Bleha, “Curing of Epoxide Resins: Model Reaction of Curing with Amine,” Journal of Polymer Chemical Ed., vol. 15, 1977.
[60] M. G. Roger, “The Structure of Epoxy Resin Using NMR and GPC Tehcniques,” Journal of Applied Polymer Science, vol. 16, 1972.
[61] R. E. Smith, “Epoxy Resin Cure, II FTIR Analysis,” Journal of Applied. Polymer Science, vol. 29, 1984.
[62] M. R. Kamal and M. E. Ryan, “The Behavior of Thermosetting Compounds in Injection Molding Cavities,” Polymer Engineering and Science, vol. 20, pp. 859~867, 1980.
[63] ANSYS, “Element User’s Guide,” Ansys Inc.
[64] C. C. Pei and S. J. Hwang, “Three-Dimensional Paddle Shift Modeling for IC Packaging,” ASME Journal of Electronic Packaging, Vol. 127, Issue 3, pp.324-334,2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw