進階搜尋


 
系統識別號 U0026-0812200915255594
論文名稱(中文) 液態封裝材料體積收縮行為之研究
論文名稱(英文) Research on Volume Shrinkage Behavior of Liquid Compound
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 何嘉益
研究生(英文) Chia-Yi Ho
電子信箱 n9696127@mail.ncku.edu.tw
學號 n9696127
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 口試委員-黃聖杰
指導教授-李輝煌
口試委員-黃登淵
中文關鍵字 P-V-T-C關係式  熟化反應  翹曲  封裝材料 
英文關鍵字 P-V-T-C equation  Cure-induced shrinkage  Warpage  Liquid compound 
學科別分類
中文摘要 本篇論文主要探討封裝材料(Liquid compound)之固化程度與壓力、體積及溫度之間的關係。封裝材料(Liquid compound)是一種熱固性材料(Thermosetting),在烘烤製程中會產生交聯(Crosslinking)反應,或稱熟化反應(Cure reaction),分子結構轉為較緊密且強勁。在過去封裝過程中,只考慮不同材料間的熱膨脹係數(Coefficient of Thermal Expansion, CTE)所造成的體積收縮,而卻忽略了封裝材料(Liquid compound)固化反應過程中所產生的體積收縮,因此無法準確的估計出封裝產品翹曲量。故本研究嘗試建立出一個P-V-T-C關係式(壓力、體積收縮、溫度、熟化度),並以數學方式呈現。此關係式可同時考慮不同材料間熱膨脹係數及固化反應所造的體積收縮。藉此關係式可求得恆溫恆壓下的熟化度與體積收縮率之間的關係,並將關係式運用在分析軟體上,而準確的預測出不同製程下產品所產生的內應力分佈與翹曲量。
建立此關係式方法包括三個流程。首先,利用微差掃描熱卡計(DSC)配合統計之技巧來求封裝材料之反應動力學模式。第二,量測封裝材料於等溫等壓下的體積變化。第三,整合體積變化與等溫熟化度的資料,並且建立出P-V-T-C關係式。
英文摘要 In this study, the relationship between conversion, pressure, volume shrinkage and temperature of Liquid compound was mainly investigated. Liquid compound which is one of thermosetting material would produce crosslinking during the heating. The crosslinking is called of cure reaction which causes distance of molecule to be close, and structure would be hard after heating. In the past, the volume shrinkage which was caused by different coefficients of thermal expansion (CTE) values of constitutive materials have only been considered in warpage simulation. Recently, there are more evidences showing that it is not accurately predict the amount of warpage without considering cure-induced volume shrinkage in a package. However, in this study, the behavior of volume shrinkage was described by a pressure-volume-temperature-cure (P-V-T-C) equation with mathematical model. The P-V-T-C equation could be applied for analytical software to accurately calculate the amount of warpage and the residual stress in a package. Three procedures were conducted for the P-V-T-C equation. First, the reaction kinetics of Liquid compound was determined by employing DSC and a statistical technique. Second, the volume shrinkage of Liquid compound was measured under isobaric and isothermal states. Third, the P-V-T-C equation was established by combining the data of volume shrinkage and conversion.
論文目次 摘 要 I
ABSTRACT II
致 謝 III
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
第一章 緒 論 1
1-1 前言 1
1-2-1 IC封裝簡介 1
1-2-2 翹曲與托盤偏移現象 5
1-3 研究目的 7
1-4 文獻回顧 8
1-5 本篇論文架構 12
第二章 理論分析 14
2-1 熟化反應動力學模式 14
2-2 P-V-T-C 關係式 15
第三章 實驗方法 20
3-1 實驗設備 20
3-1-1 DSC (Differential Scanning Calorimeter) 21
3-1-2 P-V-T-C實驗機 22
3-2 實驗流程與步驟 29
第四章 實驗方法 30
4-1 熟化反應動力學模式 30
4-2 封裝材料熟化體積收縮量測 45
第五章 P-V-T-C關係式建立與確認實驗 60
5-1 P-V-T-C關係式建立 60
5-2 P-V-T-C關係式理論值與實驗值之比較 62
5-3 P-V-T-C關係式之平移 79
第六章 結論與未來展望 84
6-1 結論 84
6-2 未來展望 85
參考文獻 86
索 引 90
自 序 91
參考文獻 [1] R. Yang, S.H. Shi and C.P. Wong, “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGY, 23, (2000).
[2] K.K. Yeong and S. R. White, “Process-Induced Stress Relaxation Analysis of AS4/3501-6 Laminate,” Journal of Reinforced Plastics and Composites, 16, 2-15 (1997).
[3] P.L. Tu, Y.C. Chan and K.C. Hang, “Reliability of MicroBGA Assembly Using No-Flow Underfill,” Microelectronics Reliability, 41, 1993-2000 (2001).
[4] Z. Zhang and C. P. Wong, “Recent Advances in Flip-Chip Underfill: Materials, Process, and Reality,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGEING TECHNOLOGY, 27, 515-524 (2004).
[5] Timmala, Fundamentals of Microsystems Packaging, McGrawHill (2002).
[6] G. Kelly, C. Lyden, W. Lawton and J. Barrett, “Accurate Prediction of PQFP Warpage,” Proceedings of 45th Electronic Components and Technology Conference, 23, 102-106 (1994).
[7] G. Kelly, C. Lyden, W. Lawton, J. Barrett, A. Saboui, H. Pape and H. J. B. Peters, “Importance of Molding Compound Chemical Shrinkage in The Stress and Warpage Analysis of PQFP’s,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, 19, 296-300 (1996).
[8] Z. Zhang, L. Fan, S. K. Sitaraman and C.P. Wong, “Four-Laser Bending Beam Measurements and FEM Modeling of Underfill Induced Wafer Warpage,” Electronic Components and Technology Conference, 19, 747-753 (2004).
[9] T. Nishimura and Y. Nakagawa, “Analysis of Stress due to Shrinkage in a Hardening Process of Liquid Epoxy Resin,” Heat Transfer-Asian Research, 31, 194-211 (2002).
[10] A. W. SNOW and J. P.ARMISTEAD,” A Simple Dilatometer for Thermoset Cure Shrinkage and Thermal Expansion Measurements,” Journal of Applied Polymer Science, 52, 401-411 (1994).
[11] A. Quach and R. Simha, “Pressure-Volume-Temperature Properties and Transition of Amorphous Polymers ; Polystyrene and Poly (orthomethylstyrene),” Journal of Applied Physicals, 42, 4592-4605 (1971).
[12] P. B. Zoller, V. Pahud and H. Ackermann, “Apparatus for Measuring Pressure-Volume-Temperature Relationships of Polymers” Review of Scientific Instruments, 45, 948-952 (1976).
[13] L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer and J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials,” Journal of Electronic Packaging, 124, 97-105, (2002).
[14] D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers and X.J. Fan, “Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers,” Proceedings of Electronic Components and Technology Conference, 19, 98-105 (2004).
[15] K.M.B. Jansen, L. Wang, D.G. Yang, C. Hof, L.J. Ernst, H.J.L. Bressers and G.Q. Zhang “Constitutive Modeling of Moulding Compounds,” Proceedings of Electronic Components and Technology Conference, 19, 890-894 (2004).
[16] Y.-S. Chang, S.-J. Hwang, H.-H. Lee and D.-Y. Huang, “Study of P-V-T-C Relation of EMC, “ Transaction of ASME, Journal of Electronic Packaging, 124, 371-373 (2002).
[17] Y.-S. Chang and S.-J. Hwang, “Isobaric Cure Shrinkage Behaviors of Epoxy Molding Compound in Isothermal State,” Journal of Polymer Science: Part B: Polymer Physics, 43, 2392-2398 (2005).
[18] S.-J. Hwang, and Y.-S. Chang, “P-V-T-C Equation for Epoxy Molding Compound,” IEEE Transactions on Components and Packaging Technologies, 29, 112-117 (2006).
[19] L.-C. Hong and S.-J. Hwang, “Study of Warpage Due to P-V-T-C Relation of EMC in IC Packaging,” IEEE Transactions on Components and Packaging Technologies, 27, 291-295 (2004).
[20] 鄧湘榆,Study of Process-Induced Warpage and Paddle-Shift Phenomena in IC Packaging ,國立成功大學機械工程研究所博士論文(2007).
[21] 林資濱, “底部填膠材料體積收縮行為之研究與量測, ” 國立成功大學工程科學研究所碩士論文(2006.7)
[22] 張智傑, “底部填膠材料之體積收縮行為描述, ” 國立成功大學工程科學研究所碩士論文(2008.7)
[23] M. R. Kamal, “Kinetics and Thermal Characterization of Thermoset cure,” Polym. Eng. Sci., 13, 1973.
[24] S. S. Sourour and M. R. Kamal, “Differential Scanning Calorimetry of Epoxy Cure-isothermal Cure Kinetics,” Thermochimica Acta., 14, 41–59, 1976.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw