進階搜尋


 
系統識別號 U0026-0812200915245509
論文名稱(中文) 平面站立與平衡板站立合併執行指向作業時生理震顫之差異
論文名稱(英文) Differential tremor dynamics of concurrent pointing tasks on level surface and balance plate
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 97
學期 2
出版年 98
研究生(中文) 郭美君
研究生(英文) Mei-chun Guo
學號 t6696105
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 口試委員-楊政峰
指導教授-黃英修
口試委員-成戎珠
中文關鍵字 主成份分析  協調控制  姿勢指向作業  圓托平衡板  多肢段生理性震顫 
英文關鍵字 Physiological tremor  Coordinative control  Postural pointing  Round balance plate  Principal component analysis 
學科別分類
中文摘要 研究目的: 本實驗的研究目的在於藉由身體多肢段生理性震顫的特徵,探討正常成年人在穩定與不穩定站立平面上,同時維持站立與指向動作時,協調控制的策略與差異。
研究方法: 二十位健康成年人參與本研究,在兩個不同穩定程度的站立平面上(穩定平面、圓托平衡板),同時執行精確之指向作業。在受試者身體的八個肢段(食指近端指骨,第二根掌骨,前臂近端,上臂近端,腰椎第五節的棘突,右股骨大轉子下1吋,右腓骨頭下1吋,及右腓骨結節處)放置雙軸加速規,以收取身體各處在前後、上下兩個方向的生理性震顫與低頻身體晃動。另外,放置一個加速規於站立平面的中央,以記錄站立平面的晃動,而食指在指向作業的微小晃動則用雷射位移感應器加以監測。研究分析包括:所有身體肢段震顫訊號、指向作業及站立平面的晃動的均方根值,身體肢段間震顫的耦合強度,以及震顫訊號的規律性。佐以主成份分析與共通性分析,粹取影響姿勢指向活動最重要的震顫特徵與頻譜參數,以瞭解站立平面對各肢體震顫的主要影響與動作控制的意涵。
研究結果: 相較於穩定平面站立,在圓托平衡板上站立時,身體肢段的生理震顫強度顯著增加,在上臂和下肢的部份尤其明顯。從鄰近肢段的震顫訊號相關性顯示出:相較於平面站立情況,在圓托平衡板上站立時,肢段間的震顫耦合程度有明顯的協調;在上肢部份增加肢段間的耦合強度,而降低下肢的耦合強度,特別在足踝關節兩端與上臂-腰椎間的震顫耦合程度降低。隨著站立平面變得不穩定,下肢震顫近似熵降低代表震顫訊號的規律性有特別增加的趨勢。經主成份分析與共通性變化,本研究發現:相較於平面站立,圓托平衡板站立的第一震顫主成份的變化主要來自下肢,明顯地出現1-4 Hz頻帶範圍的尖峰;第二震顫主成份主要來自上肢震顫,其1-4 Hz 和8-13 Hz兩個頻帶範圍的頻譜功率都有顯著的上升。在圓托平衡板站立下,食指低頻晃動與站立平面低頻晃動之比值遠較穩定平面站立情形為小,顯示受試者在圓托平衡板站立下,能採取有效之關節協調策略,減少低頻晃動的傳導。
結論: 本研究由姿勢性震顫特徵改變發現,在維持姿勢指向動作時,身體的協調控制策略會因應站立平面的穩定程度而改變: 在圓托平衡板上站立時,受試者注意力轉移至下肢,藉由踝關節與軀幹的調節以適應平衡板產生的搖晃,並減少上肢關節在指向作業的活動自由度,同時達到指向準確與站立平衡的雙重目標;動態姿勢協調的神經證據經由震顫主成份特徵而加以深入討論。
英文摘要 Objective: Through interplay of multi-segment postural tremors, the aim of this study was to investigate the variations in coordinative control of postural pointing on two stance surfaces of different stability levels.
Methods: Twenty healthy volunteers were recruited to participate in this study. They performed a postural pointing task on two different stance surfaces, level surface (LS) and round balance plate (RBP); meanwhile, eight accelerometers were placed on limbs segments, including right index finger, hand, forearm, arm, lumbar, thigh, calf and foot, to record physiological tremors in the anterior-posterior and upward-downward directions during the postural-suprapostural tasks. Besides, low-frequency movement fluctuations (≦1 Hz) of the stance surface and pointing index were recorded with an accelerometer and a laser detector. The intensity of physiological tremors and movement fluctuations of the stance surface and index finger were represented with values of root mean square (RMS). Regularity of segment tremors and tremor coupling between adjacent segments were quantified with approximate entropy and partial correlation with the effect of stance fluctuation removed. Principal component analysis (PCA) and communality analysis were statistical approaches to feature the most important element of physiological tremors, pertaining to coordinative control of the two stance conditions.
Results: Compared with LS stance, RBP stance resulted in significantly greater RMS of physiological tremors, particularly in the arm segment and the lower limb. A general enhancement of tremor coupling was noted in the upper limb but a remarked uncoupling in arm-lumbar and calf-foot complexes. Seesaw stance in the RBP condition also led to a greater regularity in segment tremors of the lower limb. The major differences in the two stances lie in primary principal components (TPC1) and secondary principal component (TPC2) that had relatively higher communality with segment tremors in the lower and upper limbs, respectively. TPC1 in the RBP condition exhibited a prominent 1-4 Hz spectral peak that was absent for TPC1 in the LS condition. Seesaw stance also added to 1-4 Hz and 8-13 Hz spectral amplitudes of the TPC2 in the RBP condition. As the ratio of movement fluctuation of the index to that stance surface was much smaller in the RBP condition than in the LS condition, the subjects were able to minimize transmission of movement fluctuations across segments in the RBP condition.
Conclusion: Stance-related organization of segment tremors suggested that coordinative strategies to optimal postural pointing were modified to balance challenges. During seesaw stance, the subjects tacitly released coupling of the trunk and ankle joint in adaptation to fluctuation movements of balance plate, but intensified joint stiffness of the upper limb to master redundancy in joint space for pointing task. Potential neural correlates for dynamic regulation of postural sway from tremor principal components are discussed.
論文目次 Abstract..........I
Chinese abstract..IV
Acknowledgement...VI
List of tables....IX
List of figures...X
Chapter 1. Introduction......................1
Chapter 2. Methods ...........................5
2.1 Subjects and experimental protocol.......5
2.2 Measurements.............................6
2.3 Data processing and feature extraction...7
2.4 Statistical analyses.....................9
Chapter 3. Results...........................11
3.1 Amplitude of multi-segment physiological tremors..11
3.2 Couplings and regularity of multi-segment physiological tremors.................................11
3.3 Principal component analysis of physiological tremors .............................................12
3.4 Behavioral data: movement fluctuations of the stance surface and index.....................................14
Chapter 4. Discussion.................................16
4.1. Drastic reduction in relative movement fluctuation for postural pointing during seesaw stance............17
4.2 Stance-dependent tremor organization and coordination strategy in the upper limb............................17
4.3 Tremor restructuring and multi-segmental strategy in the lower limb........................................19
4.4 Stance control of neuromuscular basis revealed by principal component analysis..........................22
Chapter 5. Conclusion.................................25
Reference .............................................26
參考文獻 1. Akram SB, Frank JS. Cognitive demands of postural control during continuous rotational perturbations of the support surface. Gait Posture 2009; 29(1): 86-90.
2. Almeida GL, Carvalho RL, Talis VL. Postural strategy to keep balance on the seesaw. Gait Posture 2006; 23(1): 17-21.
3. Aramaki Y, Nozaki D, Masani K, Sato T, Nakazawa K, Yano H. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans. Exp Brain Res 2001; 136(4): 463-73.
4. Bakker M, Allum JH, Visser JE, Gruneberg C, van de Warrenburg BP, Kremer BH, Bloem BR. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol 2006; 202(1): 21-35.
5. Bernstein NA. The co-ordination and regulation of movement.: Oxford: Pergamon Press., 1967.
6. Berrigan F, Simoneau M, Martin O, Teasdale N. Coordination between posture and movement: Interaction between postural and accuracy constraints. Exp Brain Res 2006; 170(2): 255-64.
7. Caillou N, Delignieres D, Nourrit D, Deschamps T, Lauriot B. Overcoming spontaneous patterns of coordination during the acquisition of a complex balancing task. Can J Exp Psychol 2002; 56(4): 283-93.
8. Colobert B, Cretual A, Allard P, Delamarche P. Force-plate based computation of ankle and hip strategies from double-inverted pendulum model. Clin Biomech (Bristol, Avon) 2006; 21(4): 427-34.
9. Creath R, Kiemel T, Horak F, Peterka R, Jeka J. A unified view of quiet and perturbed stance: Simultaneous co-existing excitable modes. Neurosci Lett 2005; 377(2): 75-80.
10. Edwards WT. Effect of joint stiffness on standing stability. Gait Posture 2007; 25(3): 432-9.
11. Ferdjallah M, Harris GF, Wertsch JJ. Instantaneous postural stability characterization using time-frequency analysis. Gait Posture 1999; 10(2): 129-34.
12. Galna B, Sparrow WA. Learning to minimize energy costs and maximize mechanical work in a bimanual coordination task. J Mot Behav 2006; 38(6): 411-22.
13. Gielen CC, Ramaekers L, van Zuylen EJ. Long-latency stretch reflexes as co-ordinated functional responses in man. J Physiol 1988; 407: 275-92.
14. Gruneberg C, Bloem BR, Honegger F, Allum JH. The influence of artificially increased hip and trunk stiffness on balance control in man. Exp Brain Res 2004; 157(4): 472-85.
15. Gruneberg C, Duysens J, Honegger F, Allum JH. Spatio-temporal separation of roll and pitch balance-correcting commands in humans. J Neurophysiol 2005; 94(5): 3143-58.
16. Hasan Z. The human motor control system's response to mechanical perturbation: Should it, can it, and does it ensure stability? J Mot Behav 2005; 37(6): 484-93.
17. Horak FB, Nashner LM. Central programming of postural movements: Adaptation to altered support-surface configurations. J Neurophysiol 1986; 55(6): 1369-81.
18. Hwang IS, Huang CT, Cherng RJ, Huang CC. Postural fluctuations during pointing from a unilateral or bilateral stance. Hum Mov Sci 2006; 25(2): 275-91.
19. Hwang IS, Yang ZR, Huang CT, Guo MC. Reorganization of multidigit physiological tremors after repetitive contractions of a single finger. J Appl Physiol 2009; 106(3): 966-74.
20. Ivanenko YP, Levik YS, Talis VL, Gurfinkel VS. Human equilibrium on unstable support: The importance of feet-support interaction. Neurosci Lett 1997; 235(3): 109-12.
21. Kaminski TR, Simpkins S. The effects of stance configuration and target distance on reaching. I. Movement preparation. Exp Brain Res 2001; 136(4): 439-46.
22. Ko YG, Challis JH, Newell KM. Postural coordination patterns as a function of dynamics of the support surface. Hum Mov Sci 2001; 20(6): 737-64.
23. Ko YG, Challis JH, Newell KM. Learning to coordinate redundant degrees of freedom in a dynamic balance task. Hum Mov Sci 2003; 22(1): 47-66.
24. Mauritz KH, Schmitt C, Dichgans J. Delayed and enhanced long latency reflexes as the possible cause of postural tremor in late cerebellar atrophy. Brain 1981; 104(Pt 1): 97-116.
25. McAuley JH, Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain 2000; 123 ( Pt 8): 1545-67.
26. Milner TE. Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp Brain Res 2002; 143(4): 515-9.
27. Morrice BL, Becker WJ, Hoffer JA, Lee RG. Manual tracking performance in patients with cerebellar incoordination: Effects of mechanical loading. Can J Neurol Sci 1990; 17(3): 275-85.
28. Morrison S, Newell KM. Inter- and intra-limb coordination in arm tremor. Exp Brain Res 1996; 110(3): 455-64.
29. Morrison S, Newell KM. Bilateral organization of physiological tremor in the upper limb. Eur J Appl Physiol Occup Physiol 1999; 80(6): 564-74.
30. Morrison S, Newell KM. Postural and resting tremor in the upper limb. Clin Neurophysiol 2000; 111(4): 651-63.
31. Morrison S, Keogh J. Changes in the dynamics of tremor during goal-directed pointing. Hum Mov Sci 2001; 20(4-5): 675-93.
32. Muller K, Homberg V, Coppenrath P, Lenard HG. Maturation of set-modulation of lower extremity emg responses to postural perturbations. Neuropediatrics 1992; 23(2): 82-91.
33. Nashner L, Berthoz A. Visual contribution to rapid motor responses during postural control. Brain Res 1978; 150(2): 403-7.
34. Oude Nijhuis LB, Bloem BR, Carpenter MG, Allum JH. Incorporating voluntary knee flexion into nonanticipatory balance corrections. J Neurophysiol 2007; 98(5): 3047-59.
35. Panzer VP, Bandinelli S, Hallett M. Biomechanical assessment of quiet standing and changes associated with aging. Arch Phys Med Rehabil 1995; 76(2): 151-7.
36. Pincus S. Approximate entropy (apen) as a complexity measure. Chaos 1995; 5(1): 110-117.
37. Riccio G, Stoffregen T. Affordances as constraints on the control of stance. Hum Mov Sci 1988; 7: 265-300.
38. Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. Gait Posture 1999; 10(2): 161-70.
39. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 1997; 52(4): M232-40.
40. Taguchi K. Spectral analysis of body sway. ORL J Otorhinolaryngol Relat Spec 1977; 39(6): 330-7.
41. Vallbo AB, Wessberg J. Organization of motor output in slow finger movements in man. J Physiol 1993; 469: 673-91.
42. Vernazza-Martin S, Martin N, Pellec-Muller AL, Tricon V, Massion J. Kinematic synergy adaptation to an unstable support surface and equilibrium maintenance during forward trunk movement. Exp Brain Res 2006; 173(1): 62-78.
43. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol 1998; 80(3): 1211-21.
44. Winter DA, Patla AE, Ishac M, Gage WH. Motor mechanisms of balance during quiet standing. J Electromyogr Kinesiol 2003; 13(1): 49-56.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw