進階搜尋


 
系統識別號 U0026-0812200915245205
論文名稱(中文) 生物可分解性聚酯與聚甲基丙烯酸甲酯摻合體之相行為與微異態
論文名稱(英文) Phase Behavior and Microheterogeneity in Blends of Poly(methyl methacrylate) with Biodegradable Polyesters
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 李淑嫻
研究生(英文) Shu-Hsien Li
電子信箱 n3894134@mail.ncku.edu.tw
學號 n3894134
學位類別 博士
語文別 英文
論文頁數 146頁
口試委員 口試委員-蘇進成
指導教授-Andreas Frömsdorf
口試委員-江文彥
口試委員-王紀
召集委員-郭人鳳
指導教授-吳逸謨
口試委員-劉英麟
口試委員-孫一明
指導教授-Stephan Förster
中文關鍵字 選擇性排列  相行為  高分子摻合體  微異態  聚酯類高分子  聚甲基丙烯酸甲酯  上臨界溫度  兩性團鏈共聚物 
英文關鍵字 PS-b-P2VP  phase behavior  blending  PMMAs  polyesters  microheterogeneity  selective arrangement  UCST 
學科別分類
中文摘要 本研究利用微分掃描卡度計(Differential Scanning Calorimetry)、光學顯微鏡(Optical Microscopy)、傅立葉轉換紅外線光譜儀(Fourier Transform Infrared spectroscopy)、掃描式電子顯微鏡(Scanning Electron Microscopy)探討兩成份poly(vinylidene fluoride) (PVDF)/聚酯類高分子與atactic poly(methyl methacrylate) (aPMMA)/聚酯類高分子摻合系統之相行為、高分子間作用力與結晶型態。由微分掃描卡度計的熱分析和光學顯微鏡分析,可知PVDF與poly(1,3-trimethylene adipate) (PTA)或與poly(1,5-pentylene adipate) (PPA)為相容,且具有下臨界溫度(lower critical solution temperature)的系統。更進一步利用平衡熔點下降實驗,求得PVDF/PPA系統之作用力參數為-0.13,其負值亦可證明此系統為熱力學相容系統。另外,傅立葉紅外線光譜儀結果顯示PVDF上的CF2官能基與聚酯類高分子上的C=O官能基之間的作用力相當微弱,此結果與上述作用力參數的結果相對應。由結晶型態發現,在PVDF/聚酯類高分子相容的系統中,PVDF環狀消光環球晶的環狀間距,會由於另一相容高分子的加入而增加,此結果亦能佐證此系統的相容性,與微弱但互相吸引的作用力。相對於PVDF與聚酯類高分子系統,aPMMA與聚酯類高分子常被歸類為相分離系統。然而,在本研究中發現,aPMMA與一系列聚酯類高分子的摻合體,其相行為會隨著組成、溫度、聚酯類高分子的結構與分子量改變而改變。隨著聚酯類高分子結構中CH2/CO比例有系統地改變,aPMMA與一系列聚酯類高分子的相形態會從完全不相容系統,轉變為不相容但具有上臨界溫度(upper critical solution temperature)的系統,再轉變為部份相容且具有上臨界溫度的系統,最後又回到完全不相容的系統。
在文獻中,aPMMA與具生物可分解性Poly(L-lactide) (PLLA)的相容性ㄧ直受到許多爭議。本研究的目標之ㄧ,就是試圖釐清aPMMA/PLLA系統的真正相行為。實驗發現,此系統在室溫下為相分離,但在升溫的過程中,會在高溫轉變為相容,為一具有上臨界溫度的系統。另外,利用平衡熔點下降實驗計算,得aPMMA/PLLA的作用力參數為負值,亦佐證此系統在高溫的相容性。由於在高溫下也有可能產生酯交換反應,使原本不相容系統進而轉變為相容。因此,在本研究也利用核磁共振光譜和溶劑誘導相轉變的可逆性,進一步排除在高溫下因化學反應而產生相轉變的可能性。了解aPMMA/PLLA系統的相行為後,本研究接著針對PMMA鏈段立體結構的不同(對排、同排與亂排(syndiotacticity, isotacticity or atacticity)),觀察立體結構的排列規則性與PLLA摻合體相行為的影響。結果發現,sPMMA/PLLA摻合體的相行為與aPMMA/PLLA系統相似,皆為相分離,但具有上臨界溫度的系統。相對於上述結果,iPMMA/PLLA摻合體則為一完全相分離系統。
另外,本研究將不定形且具氫鍵作用力poly(p-vinyl phenol) (PVPh)與PLA立體錯合物進行混摻,欲探討其PVPh對立體錯合物的相容性及結晶型態的影響。由單一的玻璃轉移溫度與平衡熔點下降實驗,可知此三成份的系統在PVPh添加量小於20 wt%時,為熱力學相容系統。在結晶型態方面,由偏光顯微鏡觀察到少量的PVPh添加會使PLA立體錯合物的球晶變小,推測PVPh在恆溫結晶過程中,會因自身氫鍵作用力而聚集成nanodomain,進而有效的形成成核劑,加速PLA立體錯合物的結晶生成。另外,利用Avrami和Tobin兩位學者所提出的結晶動力學方法,分析此系統在非恆溫結晶條件下的結晶速率與型態,結果亦顯示少量PVPh的添加會得到較快的結晶速率。
最後,在本論文的第二部份,主要是探討polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)團鏈共聚物與氧化鐵奈米粒子混合物的自組裝排列。利用原子力電子顯微鏡(Atomic Force Microscopy)與掃描式電子顯微鏡,觀察其混合物薄膜的相形態。結果發現,在氧化鐵奈米粒子做不同的表面處理,可使奈米粒子選擇性的只停留在PS鏈段或P2VP鏈段。更進一步使用Grazing-Incidence Small-Angle X-ray Scattering量測與計算其排列的方式與結構尺寸。
英文摘要 Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) techniques were used to probe phase behavior, interactions and crystalline morphology in blends of poly(vinylidene fluoride) (PVDF) with polyesters and atactic poly(methyl methacrylate) (aPMMA) with polyesters. DSC thermal analysis and OM characterization proved that PVDF was miscible with poly(1,3-trimethylene adipate) (PTA) and poly(1,5-pentylene adipate) (PPA) with a lower critical solution temperature. Small negative values of the interaction parameters (χ12 = −0.13 for a PVDF/PPA blend) were obtained with the melting-point depression method. FTIR spectroscopy results revealed that interactions between CF2 of PVDF and the C=O group of the polyester were weak, in agreement with the thermal analysis results. An increase in the coarseness and/or ring-band spacing further provided supportive evidence that miscibility did exist between the polyester and PVDF constituents in the blends. Pattern changes in ring-band spherulites of the miscible blends further substantiated the favorable, though weak, interactions between the PVDF and polyester constituents. Blend systems comprising aPMMA and polyesters are classified as immiscible; however, this study has discovered that upper-critical solution temperature (UCST) behavior with partial miscibility is the more exact description for aPMMA/polyester blend systems. Blends of aPMMA with a series of polyesters, with structures varying in a range, were characterized in terms of phase behavior and dependence of the phase behavior on composition, temperature, and constituent's structure, and molecular weight. As the polyesters' structures are varied systematically (with CH2/CO ratio from small to large), aPMMA/polyester blends exhibit a trendy change in UCST phase behavior: from complete immiscibility, to complete immiscibility (in entire composition range) with UCST, then to partial miscibility (miscible in blends with aPMMA contents greater than 70 wt%) with UCST, then finally back to complete immiscibility with no UCST.
The complex phase behavior in blends of biodegradable poly(L-lactide) (PLLA) with aPMMA system is puzzling and is a matter of debate; this study attempts to clarify the true nature of the phase behavior. A aPMMA/PLLA blend is immiscible at ambient temperature but can become miscible upon heating to higher temperatures with an UCST at 230◦C. In quasi-miscible state, the interaction strength was determined to be χ12 = −0.15 to −0.19, indicating relatively weak interactions between the PLLA ester and PMMA acrylic carbonyl groups. The absence of chemical exchange reactions above the UCST and phase reversibility back to the original phase separation morphology, assisted by solvent re-dissolution, in the heat-homogenized PLLA/aPMMA blend was shown. Verification of UCST behavior, phase diagrams and solvent-assisted phase reversibility were experimentally demonstrated in aPMMA/PLLA blends. Furthermore, it was also investigated that chain configuration influences phase behavior of blends of PMMA of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with PLLA. Blends system of sPMMA/PLLA is immiscible with an asymmetry-shaped UCST at 250oC. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend to exhibit similar UCST temperatures (230–250oC) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating.
Recently, PLA complex has received large attention owing to its attractive physical properties. Therefore, it is of interest to reveal interaction between amorphous poly(p-vinyl phenol) (PVPh) and crystalline stereocomplex of PLLA and poly(D-lactic acid). The negative value of the interaction parameter clearly confirms a thermodynamic miscibility in the ternary blend. At low contents, PVPh is well dispersed in the ternary blends, but PVPh may aggregate to nanodomains by self-associated hydrogen-bonding upon annealing. In addition, PVPh serves as an effective agent in reducing the spherulite sizes of the PLLA/PDLA crystals, which may be favorable in controlling the macroscopic properties. The Avrami and Tobin kinetic analysis methods were carried out to analyze the nonisothermal crystallization data, and the results showed that the ternary blends with an optimal range of 2–10 wt% PVPh were faster in the crystallization rate and smaller in the spherulite size than those with no PVPh or with PVPh contents greater than 10 wt %. Ternary blend containing higher PVPh contents may form large phase-separated domains and growth of the stereocomplex is hindered under the nonisothermal crystallization condition.
In the second part, it is shown that mixtures of polystyrene-block-poly(2-vinylpyrdine) (PS-b-P2VP) diblock copolymers and ferric oxide nanoparticles with P2VP ligands or PS ligands, coupled self-assembly on the nanoscale. Organization of both the polymeric and particulate entities was achieved without the use of external fields, opening a simple and general route for fabrication of ordered nanostructured materials with order. Atomic force microscopy and scanning electron microscopy images were used to investigate the film morphologies. Furthermore, grazing-incidence small-angle X-ray scattering patterns and corresponding scattered intensity along an out-of-plane cut were used to determine the lateral scales of the structure. The SEM images, top view of PS-b-P2VP –ferric oxide nanoparticle mixture films, show that the ferric oxide nanoparticles selectively assemble on the surface of the P2VP cones or PS matrix.
論文目次 ABSTRACT / I
ACKNOWLEDGEMENT / V
CONTENT / VII
LIST OF TABLES / XI
LIST OF FIGURES / X

Chapter
1 Introduction
1.1 Polymer Blends / 1
1.1.1 Miscibility in polymer blends / 2
1.1.2 Polymer-polymer phase separation / 3
1.1.3 Tacticity / 6
1.1.4 Stereocomplex / 7

1.2 Self-Assemble Materials from Block Copolymers / 8


2 Theoretical Background
2.1 Theoretical Review of Polymer Mixtures / 10
2.1.1 Thermodynamics for miscibility in two- and three-component mixtures / 10
2.1.2 Kinetics of liquid-liquid phase separation / 12
2.1.3 Melting point depression in polymer blends / 15

2.2 Phase Behavior and Morphologies of Block Copolymers / 16
2.2.1 Micro-phase separation in block copolymers / 17
2.2.2 Self-organization of amphiphilic molecules / 17


3 Experimental Section
3.1 Preparation for Polymer Blends / 19
3.1.1 Materials / 19
3.1.2 Sample preparation / 21
3.1.3 Apparatus and procedures / 22

3.2 Preparation for Block Copolymer Systems / 24
3.2.1 Materials / 24
3.2.2 Sample preparation / 26
3.2.3 Apparatus and procedures / 26


4 Results and Discussion
4.1 Weak Interaction, Marginal Miscibility, and Ring-Band Spherulites in Blends of Poly(vinylidene fluoride) with Polyesters / 28
4.1.1 Morphology and thermal evidence / 28
4.1.2 Spherulite patterns in miscible vs. immiscible PVDF/polyester blends / 38
4.1.3 Summary / 43

4.2 Immiscibility with Upper-Critical Solution Temperature Phase Diagrams for atactic Poly(methyl methacrylate)/Polyesters Blends / 44
4.2.1 Phase behavior at ambient vs. elevated temperatures / 44
4.2.2 Dependence of blend phase behaviour on polyester structure / 54
4.2.3 Effect of molecular weight on UCST by model fitting / 57
4.2.4 Summary / 59

4.3 Immiscibility-Miscibility Phase Transitions in Blends of Poly(L-lactide) with Poly(methyl methacrylate) / 60
4.3.1 Phase behavior and thermal characterization / 60
4.3.2 Effect of aPMMA molecular weight on phase diagrams / 65
4.3.3 Tg behavior of quenched blends / 65
4.3.4 Characterization of interaction strength of blends in quasi-miscible state / 66
4.3.5 Phase reversibility / 69
4.3.6 Model fitting of molecular weight dependence in UCST / 72
4.3.7 Summary / 73

4.4 Effects of Chain Configuration on UCST Behavior in Blends of Poly(L-lactic acid) with Tactic Poly(methyl methacrylate)s / 74
4.4.1 Phase behavior / 74
4.4.2 Thermal analysis / 77
4.4.3 Crystallization characteration and kinetics / 82
4.4.4 Summary / 90

4.5 Effect of Poly(4-vinyl phenol) on Complex-Forming Blends of Poly(L-lactide) and Poly(D-lactide) / 91
4.5.1 Miscibility between the crystalline complex and PVPh / 91
4.5.2 Kinetic analysis / 95
4.5.3 Summary / 102


5 Results and Discussion ­ The Project In Hamburg University
5.1 Lateral Microphase-Separation of PS-b-P2VP Diblock Copolymer Thin Films / 103
5.1.1 Atomic force microscopy characterization / 103
5.1.2 Grazing-incidence small-angle x-ray scattering / 106
5.1.3 Effect of molecule weight of diblock copolymer / 106
5.2 Self-Assembly of Nanoparticle-Copolymer Mixtures /112


6 Conclusion / 117


REFERENCES /119
參考文獻 [1] He, Y.; Zhu, B.; Inoue, Y. Prog Polym Sci 29, 1021 (2004).
[2] Nuño –Donlucas, S.; Puig, J. E.; Katime, I. Macromol Chem Phys 202, 3106 (2001).
[3] Meaurio, E.; Cesteros, L.; Parada, L. G.; Katime, I. Polym J 36, 84 (2004).
[4] Bernstein, R. E.; Wahrmund, D. C.; Barlow, J. W.; Paul, D. R. Polym Eng Sci 18, 1220 (1978).
[5] Aubin, M.; Prud’homme, R. E. J Polym Sci Polym Phys Edn 19, 1245 (1981).
[6] Penning, J. P.; John Manley, R. St. Macromolecules 29, 77 (1996).
[7] Penning, J. P.; John Manley, R. St. Macromolecules 29, 84 (1996).
[8] Lee, J. C.; Tazawa, H; Ikehara, T.; Nishi, T. Polym J 30, 327 (1998).
[9] Li, Y.; Kaito, A.; Horiuchi, S. Macromolecules 37, 2119 (2004).
[10] Rahman, M. H.; Nandi, A. K. Macromol Chem Phys 203, 653 (2002).
[11] Nishi, T.; Wang, T. T. Macromolecules 8, 909 (1975).
[12] Bernstein, R. E.; Cruz, C. A.; Paul, D. R.; Barlow, J. W. Macromolecules 10, 681 (1977).
[13] Wahrmund, D. C.; Bernstein, R. E.; Barlow, J. W.; Paul, D. R. Polym Eng Sci 18, 677 (1978).
[14] Kwei, T. K.; Patterson, G. D.; Wang, T. T. Macromolecules 9, 780 (1976).
[15] Equiburu, J. L.; Iruin, J. J.; Fernandez-Berridi, M. J.; San Román, J. Polymer 39, 6891 (1998).
[16] Zhang, G.; Zhang, J.; Wang, S.; Shen, D. J Polym Sci Part B Polym Phys 41, 23 (2003).
[17] Shirahase, T.; Komatsu, Y.; Tominaga, Y.; Asai, S.; Sumita, M.; Polymer 47, 4839 (2006).
[18] Canetti, M.; Sadocco, A.; Seves, A. Polymer 35, 2884 (1994).
[19] Siciliano, A.; Seves, A.; De Marco, T.; Cimmino, C.; Martusecelli, E.; Silvestre, C. Macromolecules 28, 8065 (1995).
[20] Cimmino, C.; Iodice, P.; Silvestre, C.; Karasz, F. E. J Appl Polym Sci 75, 746 (2000).
[21] Iannace, S.; De Luca, N.; Nicolais, L. J Appl Polym Sci 41, 2691 (1990).
[22] An Y, Dong L, Li G, Mo Z, Feng Z J Polym Sci Polym Phys 38, 1860 (2000).
[23] Saeki, S.; Cowie, J. M. G.; McEwen, I. J. Polymer 24, 60 (1983).
[24] Widmaier, J. M.; Mignard, G. Eur Polym J 23, 989 (1987).
[25] Callaghan, T. A.; Paul, D. R. Macromolecules 26, 2437 (1993).
[26] Roe, R. J.; Zin, W. C. Macromolecules 13, 1221 (1980).
[27] Kim, J. K.; Lee, H. H.; Son, H. W. Macromolecules 31, 8566 (1998).
[28] Aubin, M.; Prud’homme, R. E. Macromolecules 13, 365 (1980).
[29] Cruz, C. A.; Barlow, J. W.; Paul, D. R. Macromolecules 12, 726 (1979).
[30] Kasko, A. M.; Heintz, A. M.; Pugh, C. Macromolecules 31, 256 (1998).
[31] Enders, S.; Starnrnel, A.; Wolf, B. A. Macromol Chem Phys 97, 2961 (1996).
[32] Lai, W. C.; Liau, W. B.; Lin, T. T. Polymer 45, 3073 (2004).
[33] Schacht, P. A.; Koberstein, J. T. Polymer 43, 6527 (2002).
[34] Cowie, J. M. G.; McEwen, I. J. Polymer 26, 1667 (1985).
[35] Lin, J. L.; Roe, R. J. Macromolecules 20, 218 (1987).
[36] Schneider, H. A.; Dilger, P. Polym Bull 21, 265 (1989).
[37] Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer 30, 386 (1989).
[38] Woo, E. M.; Chou, I. –C.; Lee, L .T. Polymer 43, 4225 (2002).
[39] Chang, L. L.; Woo, E. M. Macromol Chem Phys 202, 636 (2001).
[40] Chang, L. L.; Woo, E. M. Macromolecules 33, 6892 (2000).
[41] Chuang, W. T.; Shin, K. S.; Hong, P. D. J Polym Res 12, 197 (2005).
[42] Tsuji, H.; Ishizaka, T.; Int J Biol Macromol 29, 83 (2001).
[43] Shetter, J. A. J Polym Sci Part B: Polym Phys 1, 209 (1963).
[44] O'Reilly, J. M.; Bair, H. E.; Karasz F. E. Macromolecules 15, 1083 (1982).
[45] Plazek, D. J.; Raghupathi, N. Polym Prepr Am Chem Soc Div Polym Chem 15, 53 (1974).
[46] Roerdink, E.; Challa, G. Polymer 19, 173 (1978).
[47] Schurer, J. W.; De Boer, A. ; Challa, G. Polymer 16, 201 (1975).
[48] Vorenkamp, E. J.; Brinke, G. T.; Meijer, J. G.; Jager, H.; Challa, G. Polymer 26, 1725 (1985).
[49] Hsu, W. P. J Appl Polym Sci 66, 1773 (1997).
[50] Hsu, W. P. J Appl Polym Sci 83, 1425 (2002).
[51] Hsu, W. P. J Appl Polym Sci 81, 3190 (2001).
[52] Bosscher, F.; Ten Brinke, G.; Challa, G. Macromolecules 15, 1442 (1982).
[53] Koennecke, K.; Rehage, G. Makromol Chem 184, 2679 (1983).
[54] Matsubayashi, H.; Chatani, Y.; Tadokoro, H.; Dumas, P.; Spassky, N.; Sigwalt, P. Macromolecules 10, 996 (1977).
[55] H. Sakakihara, Y. Takahashi, H. Tadokoro, N. Oguni, and H. Tani, Macromolecules 6, 205 (1973).
[56] Grenier, D.; Prud’homme, R. E.; Leborgne, A.; Spassky, N. J Polym Sci Polym Phys Ed 22, 577 (1984).
[57] Lavallée, C.; Prud’homme, R. E. Macromolecules 22, 2438 (1989).
[58] Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S.-H. Macromolecules 20, 904 (1987).
[59] Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.-I.; Tsuji, H.; Hyon, S.-H.; Ikada, Y. J Macromol Sci Phys B30, 119 (1991).
[60] Brizzolara, D.; Cantow, H.-J.; Diederichs, K.; Keller, E.; Domb, A. J. Macromolecules 29, 191 (1996).
[61] Tsuji, H.; Tezuka, Y. Biomacromolecules 5, 1181 (2004).
[62] Tsuji, H. Polymer 43, 1789 (2002).
[63] Brochu, S.; Prud’homme, R. E.; Barakat, I.; Jerome, R. Macromolecules 28, 5230 (1995).
[64] Slager, J.; Domb, A. J. Biomaterials 23, 4389 (2002).
[65] Slager, J.; Domb, A. J. Biomacromolecules 4, 1316 (2003).
[66] Slager, J.; Domb, A. J. Eur J Pharm Biopharm 58, 461 (2004).
[67] Slager, J.; Domb, A. J. J Controlled Release 107, 474 (2005).
[68] Tsuji, H. Macromol Biosci 5, 569 (2005).
[69] Boontongkong, Y.; Cohen, R. E. Macromolecules 35, 3647 (2002).
[70] Sohn, B. H.; Seo, B. H. Chem Mater 13, 1752 (2001).
[71] Sohn, B. H.; Choi, J.-M.; Yoo, S. I.; Yun, S.-H.; Zin, W.-C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. J Am Chem Soc 125, 6368 (2003).
[72] Spatz, J.; Mössmer, S.; Möller, M.; Kocher, M.; Neher, D.; Wegner, G. Adv Mater 10, 473 (1998).
[73] Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L. J Am Chem Soc 125, 5276 (2003).
[74] Lopes, W. A.; Jaeger, H. M. Nature 414, 735 (2001).
[75] Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. J Am Chem Soc 127, 5036 (2005).
[76] Kim, B. J.; Chiu, J. J.; Yi, G. R.; Pine, D. J.; Kramer, E. J. Adv Mater 17, 2618 (2005).
[77] Förster, S.; Plantenberg, T. Angew Chem 114, 712 (2002); Angew Chem Int Ed 41, 688 (2002).
[78] Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science, 276, 1401 (1997).
[79] Shenton, W.; Pum, D.;Sleytr, U. B.; Mann, S. Nature, 389, 585 (1997).
[80] Mann, S.; Ozin, G. A. Nature 382, 313 (1996).
[81] Thurn-Albrecht, T.; Schotter,J. ; Kastle, G. A.; Emley, N.; Shibuachi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T. ; Russell, T. P. Science 290, 2126 (2000).
[82] Bockstaller, M.; Kolb, R.; Thomas, E. L. Adv Mater 13, 1783 (2001).
[83] Black, C. T.; Murray, C. B.; Sandstrom, R. L. ;Sun, S. H. Science 290, 1131 (2000).
[84] Sanchez, C.; Lebeau, B. MRS Bull 26, 377 (2001).
[85] Alexandre, M.; Dubois, P. Mater Sci Eng Rev 28, 1 (2000).
[86] Soo, P. P.; Huang, B.; Jang, Y. -L.; Chiang, Y. -M.; Sadoway, D. R.; Mayes, A. M. J Electrochem Soc 146, 32 (1999).
[87] Balazs, A. C. Curr Opin Colloid Interf Sci 4, 443 (2000).
[88] Lee, J. Y.; Shou, Z.; Balazs, A. C. Phys Rev Lett, 91, 136103 (2003).
[89] Lee, J. Y.; Shou, Z.; Balazs, A. C. Macromolecules 36, 7730 (2003).
[90] Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Science, 292, 2469 (2001).
[91] Strobl, G. R. The Physics of Polymers Concepts for Understanding Their Structures and Behavior, Section 3.2 Polymer Mixtures, Springer-Verlag (1996).
[92] Robard, A.; Patterson, D. Macromolecules, 10, 1021 (1977).
[93] Su, C. S.; Patterson, D. Macromolecules, 10, 709 (1977).
[94] Bhattacharyya, C.; Maiti, N.; Mandal, B. M.; Bhattacharyya, S. N. Macromolecules, 22, 487 (1989).
[95] Scott, R. L. J Chem Phys, 17, 279 (1949).
[96] Tompa, H. Trans Faraday Soc, 45, 1142 (1949).
[97] Su, A. C.; Fried, J. R. Polym Eng Sci, 27, 1657 (1987).
[98] Schmidt-Rohr, K.; Spiess, H. W. Multidimentional Solid-State NMR and Polymers, Chapter X, Academic Press, London (1996)
[99] Colombani, J.; Bert, J. J Non-Equilib Thermodyn 29, 389 (2004).
[100] Flory, P. J. Principles of Polymer Chemistry, Chapter XII, Cornell University Press, Ithaca (1953).
[101] Sperling, L. H. Introduction to Physical Polymer Science, Chapter IX, John Wiley & Sons, Inc., New York (1992).
[102] Scott, R. L. J Chem Phys 17, 279 (1949).
[103] Nishi, T.; Wang, T. T. Macromolecules 8, 909 (1975).
[104] Förster, S.; Zisenis, M.; Wenz, E.; Antonietti, M. J Chem Phys 104, 9956 (1996).
[105] Plantenberg, T. PhD Thesis, University of Hamburg (Germany) (1999).
[106] Frömsdorf, A.; Capek, R.; Roth, S. V. J Chem Phys B 110, 15166 (2006).
[107] Levine, J. R.; Cohen, J. B.; Chung, Y. W.; Georgopoulos, P. J Appl Crystallogr 22, 528 (1989).
[108] Förster, S.; Timmann, A.; Konrad, M.; Schellbach, C.; Meyer, A.; Funari, S. S.; Nakamura, H.; Mulvaney, P.; Knott, R. J Phys Chem B 109, 1347 (2005).
[109] Lazzari, R. J Appl Crystallogr 35, 406 (2002).
[110] Couchman, P. R.; Karaza, F. E. Macromolecules 11, 117 (1978).
[111] Hoffman, J. D.; Weeks, J. J. J Res Natl Bur Stand A66, 13 (1962).
[112] Marand, H.; Collins, M. Polym Prepr 31, 552 (1990).
[113] Flory, P. J.; Ellenson, J. L.; Eichinger, B. E. Macromolecules 1, 279 (1968).
[114] Flory, P. J. J Am Chem Soc 87, 1833 (1965).
[115] McMaster, L. P. Macromolecules 6, 760 (1973).
[116] Chiang, C. P.; Woo, E. M. Europ Polym J 42, 1875 (2006).
[117] Flory, P. J. Principles of Polymer Chemistry. Cornell U Press Chap XII Ithaca/London (1978).
[118] Roe, R. J. Adv Chem Ser 176, 599 (1979).
[119] Chang, L. L.; Woo, E. M. Colloid Polym Sci 281, 1149 (2003).
[120] Gordon, M.; Taylor, J. S. J Appl Polym Sci 2, 493 (1952).
[121] Fischer, E. W.; Sterzel, H. J. Kolloid-Zeitschrift And Zeitschrift Fur Polymere 251, 980 (1973).
[122] Wang, Y.; Funari, S. S.; Mano, J. F. Macromol Chem Phys 207, 1262 (2006).
[123] Di Lorenzo, M. L. Polymer 42, 9441 (2001).
[124] Hoffman, J. D.; Frolen, L. J.; Ross, G. S.; Lauritzen, J. I. J Res Natl Bur Stand US SectA 79, 671 (1975).
[125] Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. “Treatise on Solid State Chemistry: Crystalline and Non-crystalline Solids, Plenum”, New York (1976).
[126] Hoffman, J. D. Polymer 24, 3 (1983).
[127] Iannace, S.; Nicolais, L. J Appl Polym Sci 64, 911 (1997).
[128] Di Lorenzo, M. L. Eur Polym J 41, 569 (2005).
[129] Meaurio, E.; Zuza, E.; Sarasua, J. R. Macromolecules 38, 1207 (2005).
[130] Brandrup, J.; Immergut, E. H., “Polymer Handbook”, Interscience, New York, Ch IV, p 366 (1966).
[131] Cowie, J. M. G. Polymer 10, 708 (1969).
[132] John, E.; Ree, T. J Polym Sci Polym Chem Ed 28, 385 (1990).
[133] Silvestre, C.; Cimmino, S.; Martuscelli, E.; Karasz, F. E.; MacKnight, W. J. Polymer 28, 1190 (1987).
[134] Ramana Rao, G.; Castiglioni, C.; Gussoni, M., Zeroi, G.; Martuscelli, E. Polymer 26, 811 (1985).
[135] Tiller, A. R.; Gorella, B. Polymer 35, 3251 (1994).
[136] Yang, H.; Li, Z.-S.; Qian, H.-J.; Yang, Y.-B.; Zhang, X. -B.; Sun, C.-C. Polymer 45, 453 (2004).
[137] Şen, M.; Güven, O. J Polym Sci Part B Polym Phys 36, 213 (1998).
[138] Landry, C. J. T.; Massa, D. J.; Teegarden, D. M.; Landry, M. R.; Henrichs, P. M.; Colby, R. H.; Long, T. E. Macromolecules 26, 6299 (1993).
[139] Kuo, S. W.; Huang, C. F.; Chang, F. C. J Polym Sci Part B Polym Phys 39, 1348 (2001).
[140] Tsuji, H.; Ikada, Y. Polymer 40, 6699 (1999).
[141] Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Macromolecules 31, 3895 (1998).
[142] Kister, G.; Cassanas, G.; Vert, M. Polymer 39, 267 (1998).
[143] Xu, G.; Shi, W. F.; Hu, P.; Mo, S. P. Eur Polym J 41, 1828 (2005).
[144] Zhang, H.; Ren, M.; Chen, Q.; Sun, S.; Sun, X.; Zhang, H.; Mo, Z. J Polym Sci Part B: Polym Phys 44, 1320 (2006).
[145] Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 38, 1822 (2005).
[146] Qiu, D.; Kean, R. T. Appl Spectrosc 52, 488 (1998).
[147] Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. Macromolecules 34, 4542 (2001).
[148] Ding, Q.; Dai, W. L.; Zhang, P. Polym Eng Sci 47, 2034 (2007).
[149] Acar, I.; Durmuş, A.; Özgümüş, S. J Appl Polym Sci 106, 4180 (2007).
[150] Avrami, M. J Chem Phys 7, 1103 (1939).
[151] Avrami, M. J Chem Phys 8, 212 (1940).
[152] Avrami, M. J Chem Phys 9, 177 (1941).
[153] Jeziorny, A. Polymer 19, 1142 (1978).
[154] Qiu, Z.; Yang, W. J Appl Polym Sci 104, 972 (2007).
[155] Tobin, M. C. J Polym Sci Polym Phys Ed 12, 399 (1974).
[156] Tobin, M. C. J Polym Sci Polym Phys Ed 14, 2253 (1976).
[157] Tobin, M. C. J Polym Sci Polym Phys Ed 15, 2269 (1977).
[158] Frömsdorf, A.; Kornowski, A.; Pütter, S.; Stillrich, H.; Lee, L.-T. Small 3, 880 (2007).
[159] Aizawa, M.; Buriak, J. M. Chem Mater, 19, 5090 (2007).
[160] Zhao, J.; Tian, S.; Wang, Q.; Liu, X.; Jiang, S.; Ji, X.; An, L.; Jiang, B. Eur Phys J E 16, 49 (2005).
[161] Bolze, J.; Ree, M.; Youn, H. S.; Chu, S. -H.; Char, K. Langmuir 17, 6683 (2001).
[162] Yoon, J.; Jin, S.; Ahn, B.; Rho, Y.; Hirai, T.; Maeda, R.; Hayakawa, T.; Kim, J.; Kim, K.-W.; Ree, M. Macromolecules, , 41, 8778 (2008).
[163] Woo, E. M.; Wu, P. L. Colloid Polym Sci 284, 357 (2006).
[164] Förster, S.; Plantenberg, T. Angew Chem Int Ed 41, 688 (2002).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw