進階搜尋


 
系統識別號 U0026-0812200915243381
論文名稱(中文) Indole衍生物SK228抑制癌細胞生長並在活體具抑制腫瘤生長作用
論文名稱(英文) A Novel Indole Compound SK228 Inhibits Cancer Cell Growth in Cell and Xenograft Models
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 97
學期 2
出版年 98
研究生(中文) 許貝君
研究生(英文) Pei-Chun Hsu
學號 s2696409
學位類別 碩士
語文別 英文
論文頁數 83頁
口試委員 口試委員-陳炯東
口試委員-廖寶琦
指導教授-王憶卿
口試委員-林秋烽
中文關鍵字 細胞凋亡  抗癌藥物  SK228 
英文關鍵字 apoptosis  antimitotic  SK228  indole compound 
學科別分類
中文摘要 研究背景:儘管已有許多抗癌藥物正廣泛使用,但癌症在國內外仍是主要的疾病死亡原因,因此,研發與合成新穎的抗癌藥物是刻不容緩的。前人文獻中發現,許多對於癌細胞具有抑制作用的藥物都具有的結構,能使細胞週期停滯、細胞凋亡而達到抗癌的作用;但卻在癌症治療時會造成病人體重下降或器官傷害等副作用。
研究目的:本研究著重於發展一具有結構的新穎衍生物1,4-bis(di(5-hydroxy-1H-indol-3-yl)methyl)benzene,簡稱為SK228,以細胞及前臨床動物模式探討其對癌細胞的毒殺作用及其機制,並確定其為不造成體重下降或器官傷害的癌症專一性藥物。
研究結果:我們發現在SK228處理下,能有效的對多株肺癌細胞以及食道癌細胞產生毒殺作用,對正常肺細胞則沒有明顯細胞毒性影響,且在處理24及48小時後,可分別由內膜phophatidylserine外翻以及Flow cytometry實驗中發現細胞週期停滯在G2/M時期且走向細胞凋亡;另外我們也發現SK228會藉由結合上DNA minor groove、嵌入DNA、及引發自由基產生而造成DNA損傷。由西方墨點法結果顯示,調控細胞週期通過M時期所需的cyclin B1有不正常的表現量上升,以及作為M時期指標的histone H3 phosphoserine 10表現量上升,顯示SK228主要使細胞週期停滯在M時期,由細胞分子模擬對接實驗中也發現SK228有潛力能結合上tubulin的colchicine結合位。另外在細胞凋亡途徑的觀察中發現,調控內在性/粒線體路徑細胞凋亡的caspase 9及caspase 3有裂解活化的現象,而調控外在性細胞凋亡的caspase 8則沒有改變,顯示SK228處理下是以內在性/粒線體路徑使細胞走向細胞凋亡;進一步檢查調控粒線體外膜通透性的BCL-2蛋白家族成員的表現,更確認了內在性/粒線體路徑被活化,而釋放出粒腺體細胞色素c,引起細胞凋亡。同時在前臨床動物模式實驗結果顯示,SK228在活體也能有效的抑制A549腫瘤生長,且沒有顯著的血清生化學指標變異、主要臟器組織傷害或體重減輕等副作用。動物腫瘤組織之TUNEL分析及活化態caspase 3之免疫組織染色顯示,SK228處理在活體腫瘤中亦能誘導癌組織細胞之細胞凋亡。
結論:本研究為首篇以細胞及動物模式證明,新穎結構的衍生物SK228具有不造成體重下降或器官傷害的癌症專一性藥物。實驗結果顯示,SK228透過引發DNA傷害使細胞週期停滯在M時期,並誘導內在性/粒線體路徑使細胞走向細胞凋亡,我們認為,SK228有潛力作為新穎的抗癌藥物;未來我們將會針對SK228於細胞骨架microtubule的影響,以及對於抑制癌細胞轉移的能力作深入的探討。
英文摘要 Background. Previous studies have shown the antimitotic effect on various malignancies of indole compounds, which cause cell cycle arrest and cell apoptosis. However, clinical use of conventional drugs with indole structure exhibits many undesirable side effects. Therefore, it is necessary to seek for more efficient and less harmful indole compounds for cancer therapy.
Purpose. This study developed a novel indole compound 1,4-bis(di(5-hydroxy-1H-indol-3-yl)methyl)benzene, named SK228. Its effects and mechanism on anticancer growth were examined in cell and animal models.
Results. The present study found that SK228 significantly inhibited cell growth of lung cancer cell lines such as A549, H1299, and CL1-1 and esophageal carcinoma cell lines such as CE48T and KYSE150, without affecting the growth of normal lung cell line IMR90. After treating with SK228 for 24 hours, externalization of inner cell membrane phosphatidylserine with the increase of sub-G1 phase at 48 hours were observed by fluorescent microscope and Flow cytometry, indicating that SK228 induced cell apoptosis. The study further verified that SK228 induced DNA damage by Comet assay, and characterized that SK228-induced damage resulted from DNA minor groove binding, DNA intercalating, and reactive oxygen species production from mitochondria. Western blot analyses showed that SK228 treatment induced abnormally sustained protein level of cyclin B1 and upregulated mitosis marker histone H3 phosphoserine 10, indicating SK228 arrested cell at M phase. Furthermore, SK228 was predicted to bind on colchicine-binding site of tubulin by molecular docking. The increased cytochrome c release into cytosol along with the increase of caspase 3 and caspase 9 cleaved forms without affecting the pro-caspase 8. In addition, the expression levels of BCL-2 family regulators of mitochondrial outer membrane permeabilization were also affected. These results indicated that SK228 induced intrinsic/mitochondrial-mediated apoptosis pathway. Animal study showed that SK228 remarkably reduced tumor size in nude mice bearing human A549 lung carcinoma tumor xenograft without significant side effects examining by serum biochemistry, hematology tests, and histological sections of major organs. TUNEL assay and immunohistochemistry of cleaved caspase 3 in tumors from SK228-treated animals confirmed that SK228 inhibited cancer cell growth by initiating apoptosis.
Conclusion. The present study provides first evidence that SK228 shows cancer cell-specific cytotoxicity by mitochondria-mediated apoptosis resulting from DNA damage. In addition, SK228 demonstrates in vivo anti-tumor activity against human xenograft in murine model. SK228 has potential to be tested as a pharmaceutical compound for cancer treatment. The effects of SK228 on microtubule and cancer cell metastasis will be further examined.
論文目次 Introduction---------------------------------------------------------1
I.Clinical Significance of Lung Cancer-------------------------------1
II.Clinical Significance of Esophageal Cancer------------------------2
III.Overview of Cell Cycle-------------------------------------------4
i.Cell cycle---------------------------------------------------------4
ii.Cyclins and cyclin-dependent kinases (CDKs)-----------------------5
iii.Cyclin-dependent kinases inhibitors (CKIs)-----------------------6
iv.Cell cycle checkpoint---------------------------------------------7
v.Cell cycle and cancer----------------------------------------------8
IV.Overview of Apoptosis---------------------------------------------9
i.Apoptosis----------------------------------------------------------9
ii.Caspases (cysteine-dependent aspartate-specific proteases)-------10
iii.BCL-2 family (B-cell lymphoma 2)--------------------------------11
iv.Pathways of apoptosis--------------------------------------------12
v.Apoptosis and cancer----------------------------------------------14
V.Reactive Oxygen Species (ROS)-------------------------------------14
VI.Compounds with Indole Structure----------------------------------15
VII.1,4-bis(di(5-hydroxy-1H-indol-3-yl)methyl)benzene (SK228)-------17
Specific Aims-------------------------------------------------------18
Materials and Methods-----------------------------------------------19
I.Materials---------------------------------------------------------19
i.Cell lines--------------------------------------------------------19
ii.1,4-bis(di(5-hydroxy-1H-indol-3-yl)methyl)benzene (SK228)--------19
iii.Animal model----------------------------------------------------20
II.Methods----------------------------------------------------------20
i.Cell culture------------------------------------------------------20
ii.Compound cytotoxicity assay/MTT assay----------------------------20
iii.Early apoptosis detection/Phosphatidylserine (PS) staining------21
iv.Analysis of cell cycle distribution------------------------------22
v.Determination of DNA damage/Comet assay---------------------------22
vi.DNA minor groove binding effect/Hoechst dye 33342 displacement assay--------23
vii.DNA intercalating measurement/Plasmid DNA circle-linear assay--------------24
viii.Determination of intracellular reactive oxygen species (ROS)---25
ix.Western blot analysis--------------------------------------------25
x.Molecular Docking-------------------------------------------------27
xi.Subcutaneous implantation of cancer cells in animals and monitoring of in vivo anti-tumoral activity after drug treatment--------27
xii.TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) assay------------------------------------------------------29
xiii.Immunohistochemistry-------------------------------------------30
Results-------------------------------------------------------------31
I.SK228 sufficiently inhibits cell growth of various lung cancer cell lines and esophageal carcinoma cell lines---------------------31
II.SK228 inhibits cancer cell growth through G2/M phase arrest and apoptosis--------------------------------------------------------31
III.SK228 causes DNA damage through binding on DNA minor groove, intercalating to DNA, and induction of ROS production--------------32
IV.SK228 alters p53/p21 and cyclin B1 protein level and arrests cell cycle at M phase-----------------------------------------------34
V.SK228 treatment activates intrinsic/mitochondrial-mediated apoptosis pathway------------------------------------------------------36
VI.SK228 remarkably reduces tumor growth in vivo without significant side effects---------------------------------------------------36
VII.SK228 induces apoptosis in animal tumor tissue------------------38
Discussion----------------------------------------------------------39
References----------------------------------------------------------44
Figures-------------------------------------------------------------51
參考文獻 Afroz Alam, M., and Naik, P.K. (2009). Molecular modelling evaluation of the cytotoxic activity of podophyllotoxin analogues. J Comput Aided Mol Des 23, 209-225.
Agarwal, M.L., Agarwal, A., Taylor, W.R., and Stark, G.R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 92, 8493-8497.
Ahmad, I.M., Aykin-Burns, N., Sim, J.E., Walsh, S.A., Higashikubo, R., Buettner, G.R., Venkataraman, S., Mackey, M.A., Flanagan, S.W., Oberley, L.W., et al. (2005). Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem 280, 4254-4263.
Arellano, M., and Moreno, S. (1997). Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29, 559-573.
Bacher, G., Nickel, B., Emig, P., Vanhoefer, U., Seeber, S., Shandra, A., Klenner, T., and Beckers, T. (2001). D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res 61, 392-399.
Bayless, K.J., and Davis, G.E. (2004). Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 279, 11686-11695.
Blasiak, J., Arabski, M., Krupa, R., Wozniak, K., Rykala, J., Kolacinska, A., Morawiec, Z., Drzewoski, J., and Zadrozny, M. (2004). Basal, oxidative and alkylative DNA damage, DNA repair efficacy and mutagen sensitivity in breast cancer. Mutat Res 554, 139-148.
Brancale, A., and Silvestri, R. (2007). Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med Res Rev 27, 209-238.
Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M., and Shore, G.C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
Broker, L.E., Kruyt, F.A., and Giaccone, G. (2005). Cell death independent of caspases: a review. Clin Cancer Res 11, 3155-3162.
Canta, A., Chiorazzi, A., and Cavaletti, G. (2009). Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr Med Chem 16, 1315-1324.
Chen, Y., and Poon, R.Y.C. (2008). The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13, 5016-5029.
Chipuk, J.E., Fisher, J.C., Dillon, C.P., Kriwacki, R.W., Kuwana, T., and Green, D.R. (2008). Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci U S A 105, 20327-20332.
Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164.
Danesi, R., de Braud, F., Fogli, S., de Pas, T.M., Di Paolo, A., Curigliano, G., and Del Tacca, M. (2003). Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev 55, 57-103.
Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
Das, S., Boswell, S.A., Aaronson, S.A., and Lee, S.W. (2008). P53 promoter selection: choosing between life and death. Cell Cycle 7, 154-157.
De Souza, C.P., Ellem, K.A., and Gabrielli, B.G. (2000). Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp Cell Res 257, 11-21.
Department of Health, The executive Yuan. Republic of China: Health Promotion and Protection. In Public Health in Taiwan Area, Republic of China. R. O. C. Press, Taipei, pp47-50, 2008
Desagher, S., and Martinou, J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377.
Desbene, S., and Giorgi-Renault, S. (2002). Drugs that inhibit tubulin polymerization: the particular case of podophyllotoxin and analogues. Curr Med Chem Anticancer Agents 2, 71-90.
Dougherty, C.J., Kubasiak, L.A., Frazier, D.P., Li, H., Xiong, W.C., Bishopric, N.H., and Webster, K.A. (2004). Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. Faseb J 18, 1060-1070.
Du, J., Daniels, D.H., Asbury, C., Venkataraman, S., Liu, J., Spitz, D.R., Oberley, L.W., and Cullen, J.J. (2006). Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J Biol Chem 281, 37416-37426.
Duflos, A., Kruczynski, A., and Barret, J.M. (2002). Novel aspects of natural and modified vinca alkaloids. Curr Med Chem Anticancer Agents 2, 55-70.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516.
Gong, Y., Sohn, H., Xue, L., Firestone, G.L., and Bjeldanes, L.F. (2006). 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res 66, 4880-4887.
Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674.
Hartwell, L.H., and Weinert, T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634.
Hayflick, L. (1997). Mortality and immortality at the cellular level. A review. Biochemistry (Mosc) 62, 1180-1190.
Heath-Engel, H.M., Chang, N.C., and Shore, G.C. (2008). The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27, 6419-6433.
Helfrich, B.A., Raben, D., Varella-Garcia, M., Gustafson, D., Chan, D.C., Bemis, L., Coldren, C., Baron, A., Zeng, C., Franklin, W.A., et al. (2006). Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 12, 7117-7125.
Israels, E.D., and Israels, L.G. (2000). The cell cycle. Oncologist 5, 510-513.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer J Clin 58, 71-96.
Johnson, D.G., and Walker, C.L. (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39, 295-312.
Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.
Jordan, M.A., and Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer 4, 253-265.
Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., Shiah, H.S., Kuo, C.C., Huang, C.W., Wang, Y.C., et al. (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Mol Cancer Ther 6, 193-202.
Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013-1030.
Kruczynski, A., Poli, M., Dossi, R., Chazottes, E., Berrichon, G., Ricome, C., Giavazzi, R., Hill, B.T., and Taraboletti, G. (2006). Anti-angiogenic, vascular-disrupting and anti-metastatic activities of vinflunine, the latest vinca alkaloid in clinical development. Eur J Cancer 42, 2821-2832.
Kuo, C.C., Hsieh, H.P., Pan, W.Y., Chen, C.P., Liou, J.P., Lee, S.J., Chang, Y.L., Chen, L.T., Chen, C.T., and Chang, J.Y. (2004). BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res 64, 4621-4628.
Lee, C.H., Yao, C.F., Huang, S.M., Ko, S., Tan, Y.H., Lee-Chen, G.J., and Wang, Y.C. (2008). Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 113, 815-825.
Lei, K., Nimnual, A., Zong, W.X., Kennedy, N.J., Flavell, R.A., Thompson, C.B., Bar-Sagi, D., and Davis, R.J. (2002). The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22, 4929-4942.
Li, P.-Y., Changa, Y.-C., Tzang, B.-S., Chend, C.-C., and Liu, Y.-C. (2007). Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutat Res 629, 133-139.
Liebermann, D.A., Hoffman, B., and Vesely, D. (2007). p53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle 6, 166-170.
Lin, D.C., Du, X.L., and Wang, M.R. (2009). Protein alterations in ESCC and clinical implications: a review. Dis Esophagus 22, 9-20.
Liu, Q., Hilsenbeck, S., and Gazitt, Y. (2003). Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101, 4078-4087.
Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Lundberg, A.S., and Weinberg, R.A. (1999). Control of the cell cycle and apoptosis. Eur J Cancer 35, 1886-1894.
Luo, W., Liu, J., Li, J., Zhang, D., Liu, M., Addo, J.K., Patil, S., Zhang, L., Yu, J., Buolamwini, J.K., et al. (2008). Anti-cancer effects of JKA97 are associated with its induction of cell apoptosis via a Bax-dependent and p53-independent pathway. J Biol Chem 283, 8624-8633.
Manning, A.M., and Davis, R.J. (2003). Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2, 554-565.
Mariette, C., Piessen, G., and Triboulet, J.P. (2007). Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol 8, 545-553.
Marks, L.B., Garst, J., Socinski, M.A., Sibley, G., Blackstock, A.W., Herndon, J.E., Zhou, S., Shafman, T., Tisch, A., Clough, R., et al. (2004). Carboplatin/paclitaxel or carboplatin/vinorelbine followed by accelerated hyperfractionated conformal radiation therapy: report of a prospective phase I dose escalation trial from the Carolina Conformal Therapy Consortium. J Clin Oncol 22, 4329-4340.
Meerten, E.v., and Gaast, A.v.d. (2005). Systemic treatment for oesophageal cancer. Eur J Cancer 41, 664-672.
Montecucco, A., Pedrali-Noy, G., Spadari, S., Zanolin, E., and Ciarrocchi, G. (1988). DNA unwinding and inhibition of T4 DNA ligase by anthracyclines. Nucleic Acids Res 16, 3907-3918.
Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B.J., Madesh, M., and Pacher, P. (2007). Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2, 2295-2301.
Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8, 379-393.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
New, L., and Han, J. (1998). The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med 8, 220-228.
Norbury, C.J., and Hickson, I.D. (2001). Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41, 367-401.
Park, S.B., Krishnan, A.V., Lin, C.S., Goldstein, D., Friedlander, M., and Kiernan, M.C. (2008). Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. Curr Med Chem 15, 3081-3094.
Pera, M., Manterola, C., Vidal, O., and Grande, L. (2005). Epidemiology of esophageal adenocarcinoma. J Surg Oncol 92, 151-159.
Pfister, D.G., Johnson, D.H., Azzoli, C.G., Sause, W., Smith, T.J., Baker, S., Jr., Olak, J., Stover, D., Strawn, J.R., Turrisi, A.T., et al. (2004). American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 22, 330-353.
Porter, A.G. (1999). Protein translocation in apoptosis. Trends Cell Biol 9, 394-401.
Pourroy, B., Honore, S., Pasquier, E., Bourgarel-Rey, V., Kruczynski, A., Briand, C., and Braguer, D. (2006). Antiangiogenic concentrations of vinflunine increase the interphase microtubule dynamics and decrease the motility of endothelial cells. Cancer Res 66, 3256-3263.
Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405-413.
Rigas, B., and Sun, Y. (2008). Induction of oxidative stress as a mechanism of action of chemopreventive agents against cancer. Br J Cancer 98, 1157-1160.
Rivera, F., Vega-Villegas, M.E., and Lopez-Brea, M.F. (2007). Chemotherapy of advanced gastric cancer. Cancer Treat Rev 33, 315-324.
Seamus J. Martin, C.E.M.R., Anne J. McGahon, James A. Rader, Rob C. A. A. van Schie, Drake M. LaFace, and Douglas R. Green (1995). Early Redistribution of Plasma Membrane Phosphatidylserine Is a General Feature of Apoptosis Regardless of the Initiating Stimulus: Inhibition by Overexpression of Bcl-2 and Abl. J Exp Med 182, 1545-1556.
Sherr, C.J. (1996). Cancer cell cycles. Science 274, 1672-1677.
Sherr, C.J. (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60, 3689-3695.
Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512.
Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8, 394-401.
Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211.
Stinchcombe, T.E., and Socinski, M.A. (2009). Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc 6, 233-241.
Stoner, G.D., and Gupta, A. (2001). Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis 22, 1737-1746.
Taylor, W.R., and Stark, G.R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815.
Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A., and Davis, R.J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874.
Tyson, J.J., Csikasz-Nagy, A., and Novak, B. (2002). The dynamics of cell cycle regulation. Bioessays 24, 1095-1109.
Tyson, J.J., and Novak, B. (2001). Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210, 249-263.
Umar, S.B., and Fleischer, D.E. (2008). Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol 5, 517-526.
Watts, R.G., Huang, C., Young, M.R., Li, J.J., Dong, Z., Pennie, W.D., and Colburn, N.H. (1998). Expression of dominant negative Erk2 inhibits AP-1 transactivation and neoplastic transformation. Oncogene 17, 3493-3498.
Wyllie, A.H., and Golstein, P. (2001). More than one way to go. Proc Natl Acad Sci U S A 98, 11-13.
Zapata, J.M., Pawlowski, K., Haas, E., Ware, C.F., Godzik, A., and Reed, J.C. (2001). A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem 276, 24242-24252.
Zarubin, T., and Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15, 11-18.
Zhang, G.X., Lu, X.M., Kimura, S., and Nishiyama, A. (2007). Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76, 204-212.
Zhao, W., Mackenzie, G.G., Murray, O.T., Zhang, Z., and Rigas, B. (2009). Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis 30, 512-519.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw