進階搜尋


 
系統識別號 U0026-0812200915212324
論文名稱(中文) 福爾摩沙二號衛星數值地表模型與正射影像產品之產製與精度評估
論文名稱(英文) Generation and Accuracy Assessment of Formosat-2 products:Orthoimage and Digital Surface Model
校院名稱 成功大學
系所名稱(中) 衛星資訊暨地球環境研究所
系所名稱(英) Institute of Satellite Informatics and Earth Environment
學年度 97
學期 2
出版年 98
研究生(中文) 陳柏澧
研究生(英文) Po-Li Chen
電子信箱 l9696104@mail.ncku.edu.tw
學號 l9696104
學位類別 碩士
語文別 中文
論文頁數 129頁
口試委員 指導教授-劉正千
口試委員-曾義星
口試委員-王驥魁
中文關鍵字 數值高程模型  數值地表模型  正射糾正  福衛二號 
英文關鍵字 Formosat-2  digital elevation model  orthorectification  digital surface model 
學科別分類
中文摘要 遙測影像應用於環境監測、災害評估、正射地圖製作以及土地利用管理上均具有其優勢存在。隨著影像空間解析度不斷的提升,更豐富的細節與特徵可由影像上萃取出來。衛星立體像對所產製的數值地表模型(DSM),亦廣泛的應用在高程變化的偵測上,諸如追蹤冰河消長、估算崩塌地土方體積與繪製地表地形等。我國自主的福衛二號同時具備了高空間解析度(2m)與高時間解析度(日再訪)的取像能力,感測器更能在跨軌與順軌方向自由轉動45°;自其成功發射運作後,福衛二號已可對取像範圍內的大部份地區拍攝垂直與立體影像。然而,要產製應用價值較高的福衛二號正射影像與DSM,目前仍需透過人工手動選取與匹配地面控制點(GCPs)的程序,不僅耗時且不精確。
本研究分別闡述了兩個主要課題:對近垂直拍攝的福衛二號影像進行正射糾正,以及利用福衛二號立體像對產製DSM。研究中選定了台灣三處可同時取得50公分解析度航照影像以及5m DEM的研究區,發展一套快速且精確的方法,自動萃取及匹配大量GCPs。透過此一方法,配合衛星詮釋資料中提供的內方位與外方位參數、研究區的DEM等資訊,可建立一多項式基底的一般性推掃模式,對影像進行嚴謹的正射糾正;由GCPs所解算出來的有理多項式係數也同時應用在DSM的產製上。
本研究透過獨立檢核點來評估正射影像的精度與實用性,總體的RMSE在x方向為1.73像元至2.27像元之間,y方向RMSE在0.98像元至2.05像元之間,利用本研究所發展的方法,對福衛二號單一視景影像(12km×12km)進行正射糾正可在一小時內完成。DSM的精度評估則藉由產製不同格網解析度的資料,分別與5m數值高程模型(DEM)、ASTER DEM、SRTM DEM和40m DEM等不同來源的資料以高程差異統計值及剖面分析法互相比對。以10m格網間距DSM為例,在山區地形可達RMSE為19.9m,平原地形可達RMSE為5.6m;利用本研究所發展的方法產製區域性的DSM(8km×10km大小)僅需1.5小時。顯示此方法可應用在快速且精確的產製正射影像與DSM上。
英文摘要 Remote sensing imagery is advantageous in environment monitoring, hazard assessment, orthomap generation, and land use management. As its spatial resolution is continuously enhanced, more details can be revealed and more features can be identified. Digital surface model (DSM) generated from satellite stereo image data has also been widely used in change detection of elevation, such as tracking the glacier movement, estimating the landslide volume, and mapping the surface topography. The successful operation of Formosat-2 has enabled the collection of both high-spatial-resolution (2 m) and high-temporal-resolution (daily) images. Together with its capability of pointing ±45 degrees to both along and across track directions, Formosat-2 is able to take both nadir and stereo images for any scene in its coverage area. However, to generate two of the most important products from Formosat-2 data, the orthorectified image and DSM, the general approach still relies on the manual selecting and matching the ground control points (GCPs), which is a time consuming and inaccurate process.
This research describes two procedures: orthorectifing near-nadir Formosat-2 images and generating DSMs from Formosat-2 stereo image. Three regions in Taiwan are selected as the study areas, where the orthorectified aerial photos (50 cm) and their derived DEMs (5 m) are available. We develop a fast and accurate method that is able to automatically extract and match a large amount of GCPs. By applying this method, a polynomial-based generic pushbroom model with the interior and exterior orientation parameters acquired from satellite metadata, together with the DEM of the imaging area, are used to establish a transformation model of rigorous orthorectification. The rational polynomial coefficients calculated form extracted GCPs are also used to generate DSM form Formosat-2 stereopairs
Assessment of accuracy and validation has been made via independent check points for orthorectified image. The results indicate that RMSE is 1.73 pixel to 2.27 pixel in x-direction, and 0.98 pixel to 2.05 pixel in y-direction. The required time to process one standard scene (12km×12km) is less than one hour. For DSM, a series test of various posting resolution from 5m to 40m are comparing with the 5m digital elevation model (DEM), ASTER DEM, SRTM DEM and 40m DEM, both elevation difference statistics and profile analysis were performed. In the case of 10m posting, RMSE of 19.9m in mountainous area, and 5.6m in plain area can be achieved. The required time to generate a regional DSM (8km×10km) is approximately 1.5 hours. This fast and accurate method can be used to orthorectify Formosat-2 imagery and generate DSM in a timely manner.
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
第2章 文獻回顧 4
2.1 正射糾正 4
2.1.1 多項式轉換模式 4
2.1.2 3D有理函數模式 5
2.1.3 物理感測器模式 6
2.1.4 自動控制點萃取與匹配 7
2.2 DEM產製 8
2.2.1 順軌DEM 9
2.2.2 跨軌DEM 9
2.2.3 影響DEM精度的因子 10
2.3 福衛二號DSM與正射糾正之國內外相關研究 11
第3章 研究架構 14
第4章 研究材料 16
4.1 研究區概述 16
4.2 衛星影像 22
4.3 航照影像 31
4.4 數值高程模型 31
第5章 研究方法 39
5.1 影像前處理 39
5.2 正射糾正 42
5.2.1 控制區萃取 44
5.2.2 影像匹配 46
5.2.3 感測器模式 48
5.2.4 控制區篩選與濾除 52
5.2.5 正射影像重組 55
5.3 數值高程模型產製 55
5.3.1 RPC建置 57
5.3.2 影像共軛點與核線幾何 58
5.3.3 DEM自動產製 62
第6章 研究結果與討論 64
6.1 正射糾正影像精度檢核 64
6.2 DEM精度評估 77
6.2.1 福衛二號絕對DSM—曾文水庫研究區 80
6.2.2 福衛二號絕對DSM—濁水溪研究區 91
6.2.3 福衛二號絕對DSM—高屏溪研究區 100
6.3 結論 106
第7章 應用與建議 107
7.1 自動控制區萃取與應用 107
7.2 建議 108
參考文獻 109
附錄一 115
參考文獻 Aguilar, M. A., Aguilar, F. J., Agera, F., and Snchez, J. A.: Geometric Accuracy Assessment of QuickBird Basic Imagery Using Different Operational Approaches, Photogrammetric Engineering and Remote Sensing, 73, 1321-1332, (2007).
Bahuguna, I. M., Kulkarni, A. V., and Nayak, S.: Technical note: DEM from IRS-1C PAN stereo coverages over Himalayan glaciated region - accuracy and its utility, Int. J. Remote Sens., 25, 4029-4041, (2004).
Baillarin, S., Gleyzes, J. P., and Latry, C.: Validation of an automatic image orthorectification processing. paper presented at: Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International, (2004).
Bignone, F., and Umakawa, H.: Assessment of ALOS PRISM Digital Elevation Model Extraction over JAPAN. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008, (2008).
Chen, H., Wu, F., and Liu, C.: Introduction of ROCSAT-2 Terminal. paper presented at: The 23rd Conference on Surveying Theories and Applications, Taichung, Taiwan, (2004).
Chen, L.-C., Tee-Ann, T., and Chien-Liang, L.: The geometrical comparisons of RSM and RFM for FORMOSAT-2 satellite images, Photogrammetric engineering and remote sensing 72, 573-579, (2006).
Chen, L. C., and Lee, L. H.: Rigorous Generation of Digital Orthophotos from SPOT Images, Photogrammetric Engineering and Remote Sensing, 59, 655-661, (1993).
Crippen, R. E., and Blom, R. G.: Measurement of Subresolution Terrain Displacements Using Spot Panchromatic Imagery, Geoscience and Remote Sensing Symposium, 3, 1667-1670, (1991).
Ehlers, M., and Welch, R.: Stereo-correlation of Landsat-TM images, Photogramm. Eng. Remote Sens., 53, 1231-1237, (1987).
ERDAS: Leica Photogrammetry Suite Automatic Terrain Extraction User's Guide. (2005a).
ERDAS: Leica Photogrammetry Suite Project Manager User's Guide. (2005b).
Frstner, W.: A feature based correspondence algorithm for image matching. In: IAPRS, Rovaniemi,Finland, (1985).
Fraser, C., Hanley, H., and Yamakawa, T.: Three-Dimensional Geopositioning Accuracy of Ikonos Imagery, The Photogrammetric Record 17, 465-479, (2002).
Fujita, K., Suzuki, R., Nuimura, T., and Sakai, A.: Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya, J. Glaciol., 52, 220-228, (2008).
Galiatsatos, N., Donoghue, D. N. M., and Philip, G.: High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control: An approach using Ikonos and SRTM data, Photogramm. Eng. Remote Sens., 74, 1093-1106, (2008).
Getis, A., and Ord, J. K.: The analysis of Spatial Association by Use of Distance Statistics, Geographical Analysis, 24, 189-206, (1992).
Gianinetto, M.: Automatic digital terrain model generation using Cartosat-1 stereo images, Sens. Rev., 28, 299-310, (2008).
Gianinetto, M., and Scaioni, M.: Automated Geometric Correction of High Resolution Pushbroom Satellite Data, Photogrammetric Engineering and Remote Sensing, 74, 107-116, (2008).
Habib, A., Shin, S. W., Kim, K., Kim, C., Bang, K. I., Kim, E. M., and Lee, D. C.: Comprehensive analysis of sensor modeling alternatives for high resolution Imaging satellites, Photogrammetric Engineering and Remote Sensing, 73, 1241-1251, (2007).
Hirano, A., Welch, R., and Lang, H.: Mapping from ASTER stereo image data: DEM validation and accuracy assessment, Isprs Journal of Photogrammetry and Remote Sensing, 57, 356-370, (2003).
Hubbard, B. E., Sheridan, M. F., Carrasco-Nez, G., Daz-Castelln, R., and Rodrguez, S. R.: Comparativa lahar hazard mapping at Volcan Citlaltpetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data, J. Volcanol. Geotherm. Res., 160, 99-124, (2007).
Huggel, C., Schneider, D., Miranda, P. J., Granados, H. D., and Kaab, A.: Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatepetl Volcano, Mexico, J. Volcanol. Geotherm. Res., 170, 99-110, (2008).
Kb, A.: Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya, Remote Sens. Environ., 94, 463-474, (2005).
Kb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J.: Glacier Monitoring from ASTER Imagery : Accuracy and Applications. paper presented at: Proceedings of E ARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, (2002).
Kato, S., Yamaguchi, Y., and Liu, C.-C.: Surface heat balance analysis of Tainan City on March 6, 2001 using ASTER and Formosat-2 data, Sensors, 8, (2008).
Kervyn, M., Ernst, G. G. J., Goossens, R., and Jacobs, P.: Mapping volcano topography with remote sensing: ASTER vs. SRTM, Int. J. Remote Sens., 29, 6515-6538, (2008).
Kornus, W., Alamus, R., A, R., and Talaya, J.: DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration, ISPRS-J. Photogramm. Remote Sens., 2006, 147-159, (2006).
Lewis, J. P.: Fast Normalized Cross-Correlation, (1995).
Light, D. L., Brown, D., Colvocoresses, A., Doyle, F., Davies, M., Ellasal, A., Junkins, J., Manent, J., McKenney, A., R., U., and Wood, G.: Satellite Photogrammetry. Manual of Photogrammetry, USA: ASPRS, (1980).
Lillesand, T. M., Kiefer, R. W., and Chipman, J. W.: Rrmote Sensing and Image Interpretation, (2004).
Liu, C.-C.: Processing of FORMOSAT-2 Daily Revisit Imagery for Site Surveillance, IEEE Transactions on Geoscience and Remote Sensing, 44, 3206-3214, (2006).
Liu, C.-C., and Chang, Y.-C.: Monitoring the dynamics of ice shelf margins in Polar Regions with high-spatial- and high-temporal-resolution space-borne optical imagery, Cold Regions Science and Technology, 55, 14-22, (2009).
Liu, C.-C., and Chen, P.-L.: Automatic extraction of ground control regions and orthorectification of remote sensing imagery, Optical Express, 17, 7970-7984, (2009).
Liu, C.-C., Shieh, C.-L., and Wu, C., -A.: Change detection of gravel mining on riverbeds from the multi-temporal and high-spatial-resolution Formosat-2 imagery, River Research and Applications, (2009).
Liu, J.-G., and Ma, J.: Imageodesy on MPI & GRID for Co-seismic Shift Study Using Satellite Optical Imagery. In: In UK e-Science All Hands Meeting, (2004).
Makarovic, B.: Image correlation algorithms, International Archives for Photogrammetry and Remote Sensing, 23, 139-158, (1980).
NASA: Shuttle Press Kit Online, http://www.shuttlepresskit.com/STS-99/, edited (2009).
NSPO, http://www.nspo.org.tw, edited (2009).
Ok, A. O., and Turker, M.: Orthorectification of Bilsat Imagery using Rigorous and Simple Geometric Models. paper presented at: International Archives of Photogrammetry and Remote Sensing, Band XXXVI 1/ W41, Ankara, Turkey, (2006).
Poli, D.: General Model for Airborne and Spaceborne Linear Array Sensors. paper presented at: Proceedings of ISPRS Commission I Symposium "Integrating Remote Sensing at the Global, Regional and Local Scale", Denver, CO (USA), 10-15 November 2002., (2002).
Racoviteanu, A. E., Manley, W. F., Arnaud, Y., and Williams, M. W.: Evaluating digital elevation models for glaciologic applications : An example from Nevado Coropuna, Peruvian Andes, Global and Planetary Change, 59, 110-125, (2007).
Rocchini, D., and Di Rita, A.: Relief effects on aerial photos geometric correction, Applied Geography, 25, 159-168, (2005).
Rodrguez, E., Moris, C. S., and Belz, J. E.: A Global Assessment of the SRTM Performance, Photogramm. Eng. Remote Sens., 72, 249-260, (2006).
Scambos, T., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A.-M.: Ice Shelf Disintegration by Plate Bending and Hydro-fracture: Satellite Observations and Model Results of the 2008 Wilkins Ice Shelf Break-ups, Earth and Planetary Science Letters, 280, 51-60, (2009).
Shi, W., and Shaker, A.: Analysis of Terrain Elevation Effects on Ikonos Imagery Rectification Accuracy by Using Non-Rigorous Models, Photogrammetric Engineering and Remote Sensing, 69, 1359-1366, (2003).
Tao, C. V., and Hu, Y.: 3D reconstruction methods based on the rational function model, Photogrammetric Engineering and Remote Sensing, 68, 705-714, (2002).
Tao, C. V., and Hu, Y.: Use of the Rational Function Model for image rectification, Canadian Journal of Remote Sensing, 27, 593-602, (2001).
Tokunaga, M., and Hara, S.: DEM Accuracy Derived from ASTER Data. paper presented at: Asian Association on Remote Sensing, ACRS, Section10: Geoscience / DTM, (1996).
Toutin, T.: ASTER DEMs for geomatic and geoscientific applications: a review, Int. J. Remote Sens., 29, 1855-1875, (2008).
Toutin, T.: Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird, IEEE Trans. Geosci. Remote Sensing, 42, 2121-2129, (2004a).
Toutin, T.: DTM generation from Ikonos in-track stereo images using a 3D physical model, Photogramm. Eng. Remote Sens., 70, 695-702, (2004b).
Toutin, T.: Error Tracking in Ikonos Geometric Processing Using a 3D Parametric Model, Photogrammetric Engineering and Remote Sensing, 69, 43-51, (2003).
Toutin, T.: Review article: Elevation Modelling from Satellite Visible and Infrared (VIR) data, Int. J. Remote Sens., 22, 1097-1125, (2001).
Toutin, T.: Review article: Geometric processing of remote sensing images: models, algorithms and methods, Int. J. Remote Sens., 25, 1893-1924, (2004c).
Toutin, T., and Cheng, P.: Comparison of automated digital elevation model extraction results using along-track ASTER and across-track SPOT stereo images, Opt. Eng., 41, 2102-2106, (2002).
Tsutsui, K., Rokugawa, S., Nakagawa, H., Miyazaki, S., Cheng, C. T., Shiraishi, T., and Yang, S. D.: Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery, IEEE Trans. Geosci. Remote Sensing, 45, 1681-1696, (2007).
Valadan Zoej, M. J., Mansourian, A., Mojaradi, B., and Sadeghian, S.: 2D Geometric Correction of Ikonos Imagery Using Genetic Algorithms. paper presented at: ISPRS Conference, Ottawa, Canada, (2002).
Vassilev, V., and Popova, S.: Orthorectified Formosat-2 data performance in the CWRS Campaign 2006 and future applications. JRC IPSC/G03/C/PAR/ D(2007)(7945), (2007).
Vassilopoulou, S., Hurni, L., Dietrich, V., Baltsavias, E., Pateraki, M., Lagios, E., and Parcharidis, I.: Orthophoto generation using IKONOS imagery and high-resolution DEM: a case study on volcanic hazard monitoring of Nisyros Island (Greece), ISPRS Journal of Photogrammetry and Remote Sensing, 57, 24-38, (2002).
Wang, Y., Yang, X., Xu, F., Leason, A., and Megenta, S.: An operational system for sensor modeling and DEM generation of satellite pushbroom sensor images. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008, (2008).
Wolf, P. R., and Dewitt, B. A.: Element of Photogrammetry with Applications in GIS, (2000).
Wu, A.-M., Lee, Y.-Y., Kuo, P., and Kao, R.: ROCSAT-2 imaging planning and scheduling. paper presented at: The first Taipei international conference on digital earth, Taipei, Taiwan, (2003).
Wu, A.-M., Liu, Y., and Wu, F.: 福衛二號影像用於災害調查. paper presented at: 2005年衛星遙測於地質環境與災害應用國際研討會, 國立成功大學國際會議廳, (2005).
內政部地政司衛星測量中心, https://www.moidlassc.gov.tw/satellite/DTM/DTM_03.htm, edited (2009).
何維信: 航空攝影測量學, (2006).
林姵伶: 應用高解析影像對產生DSM之精度分析, 國立台灣師範大學: 地理學系碩士論文, 台北市, (2004).
林義乾: 以影像控制區塊進行福衛二號衛星影像定位, 國立台灣大學: 土木工程學系研究所碩士論文, 台北市, (2006).
張智安, 陳良健, and 饒見有: 福衛二號立體對影像產生數值地表模型之研究. paper presented at: 第三屆數位地球國際研討會論文集, (2005).
陳世師: 福爾摩沙衛星二號立體像對產生數值地形模型之精度研究, 國立臺灣大學: 地理環境資源學研究所碩士論文, 台北市, (2006).
經濟部水利署, http://www.wra.gov.tw, edited (2009).
潘國梁: 遙測學大綱, (2006).
蔡文龍: 福衛二號影像糾正及誤差探討, 國立成功大學: 測量及空間資訊學系碩士論文, 台南市, (2005).
譚子健: 應用生光模式及福衛二號遙測影像研究曾文水庫水質之時空分佈, 國立成功大學: 環境工程學系碩士論文, 台南市, (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw