進階搜尋


 
系統識別號 U0026-0812200915210394
論文名稱(中文) 晶格波茲曼法在微流體之應用
論文名稱(英文) Lattice Boltzmann Method in Microfludic Applications
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 李宏偉
研究生(英文) Hung-wei Lee
電子信箱 n9696133@mail.ncku.edu.tw
學號 n9696133
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-楊瑞珍
口試委員-傅龍明
口試委員-駱文傑
口試委員-曾子彝
召集委員-黃吉川
中文關鍵字 晶格波茲曼法  Shan & Chen 模型  微流體聚焦  微流道  兩相流  液滴形態 
英文關鍵字 Two phase flow  Droplet formation  Micro channel  Flow focusing  Shan & Chen model  Lattice Boltzmann method 
學科別分類
中文摘要 晶格波茲曼法(Lattice Boltzmann method, LBM)是近年來盛行的計算方法。微粒子特性背景使得在晶格波茲曼方法在模擬雙相流領域中具有許多其他過去數值方法所沒有的獨特優點。基於上述的原因,本文利用二維晶格波茲曼法之多種成份流模型,探討在微流體聚焦裝置中,兩不互溶流體同時注入十字型微流道中之微乳化液滴生成系統其液滴生成形態。由於Shan & Chen模型將兩不互溶流體交互作用力直接併入粒子之間,在模擬兩不互溶流體交會時,粒子間交互作用力只考慮離關注粒子之最近的粒子。因此粒子間距在此問題顯得格外重要,本文亦針對不同網格間距對液滴破裂現象影響測試。計算結果顯示,當兩不互溶流體所對應之表面張力越小,生成的液滴半徑和兩液滴之間距也隨之越小。另一方面,在固定非連續相入口流速時,提高兩相入口流速比情況下,產生的液滴半徑也較小。因此,在相同微流體聚焦裝置下,非連續相入口流速與兩相入口流速比,控制了生成液滴的形態與大小。綜合模擬結果,本文總共歸納出三種微流體聚焦裝置流場形態,分別為平行流、穩定生成液滴、和不穩定生成液滴。
英文摘要 Lattice Boltzmann method (LBM) is a popular computational method in recent years. The characteristic of microscopic particles makes it own good ability to simulate two-phase flow and differs from the traditionally developed numerical method. Based on the above reason, this study investigates droplet formation in a flow-focusing device using LBM. We used a two-dimensional multi-component LBM to simulate two immiscible fluids injected into a cross-junction micro-channel. The cross-junction channel is used to form micro-droplets in the liquid-liquid system. In this study, Shan & Chen’s lattice Boltzmann model for two-phase flows, is adopted to treat molecular interaction force among two particles. This model only considered the interaction force between the nearest neighbor grid points. Therefore, we have to test grid sizes between the particles for the effect on the drop breakup phenomenon. The computation results showed that, as the surface tension was decreased, the droplet size and the interval between two generated drops were decrease. Besides, when the flow rate ratio was increased under a fixed boundary condition of the velocity of the dispersed phase flow, the droplet size was decreased. The droplet shape and size in the flow-focusing device were could be formed by different flow rate ratios and velocities of the dispersed phase flow. This study illustrated the drop size as a function of flow rates, flow rate ratio and surface tension of the two immiscible fluids.
Finally, we observed that there are three types of the flow phenomenon in this study, namely, parallel-flow, stable droplet flow, and unstable droplet flow, respectively.
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 X
第一章、 緒論 1
1.1. 前言 1
1.2. 研究背景與動機 2
1.3. 文獻回顧 3
1.3.1. 有關晶格波茲曼法在雙相流的相關文獻 3
1.3.2. 有關晶格波茲曼法的相關文獻 6
第二章、 理論分析 8
2.1. 物理模型 8
2.2. 晶格波茲曼法 9
2.2.1. 描述速度場的晶格波茲曼方法 11
2.2.2. 描述雙相流的晶格波茲曼方法 16
2.3. 流場邊界條件 19
2.3.1. 無滑移邊界條件設定 19
2.3.2. 入口速度邊界設定 20
2.3.3. 出口壓力邊界設定 22
第三章、 程式驗證 23
3.1. 單相單成份流問題驗證 23
3.2. 空穴流問題之驗證(無外力項) 24
3.3. 電滲流問題之驗證(具外力項) 27
第四章、 兩不互溶流體於微流體聚焦裝置之模擬 32
4.1. 兩不互溶流體Shan & Chen模型驗證 32
4.1.1. 楊格-拉普拉斯方程式 37
4.1.2. 接觸角模擬 40
4.2. 微流體聚焦裝置內液滴形成之模擬 42
4.2.1. 網格影響測試 44
4.3. 不同流體介面強度下之流場型態結果與討論 47
4.4. 不同入口流速條件下之流場型態結果與討論 49
第五章、 結論 56
參考文獻 59
自述 62
參考文獻 [1] D.H. Rothma, J.M. Keller, Immiscible cellular-automaton fluids, J. Stat. Phys. , 52 1119, 1988.

[2] A.K. Gunstensen, D.H. Rothman, S. Zalesk, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A., 43 4320, 1991.

[3] D. Gruna, S. Chen, K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A., 5 2557, 1993.

[4]M.M. Dupin, I. Halliday, C.M. Care, Multi-component lattice Boltzmann equation for mesoscale blood flow, Phys. Rev. E, 36 8517, 2003.

[5]M.M. Dupi, T.J. Spencer, I. Halliday, C.M. Care, A many-component lattice Boltzmann equation simulation for transport of deformable particles, R. Soc.
Lond. A, 362 1885, 2004.

[6] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47 1818, 1993.

[7] X. Shan, G. Doolen, Multi-component lattice-Boltzmann model with inter-particle interaction, J. Stat. Phys., 81 379, 1995.

[8] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75 830, 1995.

[9] M.R. Swif, S.E. Orlandin, W.R. Osborn, J.M. Yeo, Lattice Boltzmann simulation of liquid-gas and binary-fluid systems, Phys. Rev. E, 54 5041, 1996.

[10] T. Inamuro, T. Ogata, F. Ogino, Numerical simulation of bubble flows by the lattice Boltzmann method, Futur. Gener. Comp. Syst., 20 959, 2004.

[11] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two- phase flows with large density differences. J. Comput. Phys. 198 628, 2004.


[12] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 282, 1998.

[13] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 329, 1998.

[14] D. Yu, R. Mei, L.S. Luo, W. Shy, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aeosp. Sci. 39 329, 2003.

[15] D. Raabe, Overview of the lattice Boltzmann method for nano and microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. 12 13, 2004.

[16]S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Clarendon Press, Oxford, 2001.

[17] J. D. Sterling, S. Chen, Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 132 196, 1996

[18] Y. H. Qian, D. D’Humieres, P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17 479, 1992.

[19]Y. H. Qian, S.A. Orszag, Lattice BGK models for the Navier-Stokes equation non-linear deviation in compressible regimes, Europhys. Lett. 21 255, 1993.

[20] Q. Zou, X. He, On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9 1591, 1997.

[21]S.P. Vanka, Block-implicit multi-grid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys. 65 138 ,1986.

[22]U. Ghia, K.N. Ghia, C.Y. Shin, High Re solutions for incompressible flow using
the Navier-Stokes equation and a multi-grid method, J. Comput. Phys. 48,387, 1982.

[23] Dieter Wolf-Gladrow, A lattice Boltzmann for diffusion, J. Stat. Phys.,79 1023, 1995.

[24] X. He, X. Shan, G.D. Doolen, A discrete Boltzmann equation model for non-ideal gases, Phys. Rev. 57 R13 1998.

[25] R.J. Hunter, Zeta Potential in Colliod Science: Principles and Applications. Academic Press, New York, 1981

[26] R.F. Probstein, Physicochemical Hydrodynamics: New York, John Wiely & Sons,1994

[27]T. Young, An essay on the cohesion of fluids. Phil. Trans. 95 65,1805

[28]S.L. Anna, N. Bontoux, H. A. Stone, Formation of dispersions using flow focusing in micro-channels, Appl. Phys. Lett. 82 364, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw