進階搜尋


 
系統識別號 U0026-0812200915203556
論文名稱(中文) 超音波霧化器應用在燃料電池增溼器可行性研究
論文名稱(英文) Feasibility Study of Ultrasonic Nebulizer Used in Fuel Cell Humidifier
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 97
學期 2
出版年 98
研究生(中文) 林志謙
研究生(英文) Chih-Chien Lin
學號 p4696410
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 口試委員-洪嘉宏
口試委員-王覺寬
口試委員-鄭金祥
指導教授-賴維祥
中文關鍵字 質子交換膜燃料電池  超音波霧化  增溼器  相對溼度 
英文關鍵字 PEMFC  Ultrasonic  Nebulizer  Relative Humidity  Humidifier 
學科別分類
中文摘要 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell)發電時,質子交換膜含水率對質子的傳遞有很大的影響,進而影響燃料電池的效能。而為了維持薄膜的高含水率,一般都是透過增溼器,在反應氣體通入電池之前,將其相對溼度提高。此外,氫氣相對溼度對於燃料電池性能的影響,遠大於陰極端氣體的相對溼度。
噴霧式增溼器已廣泛應用於燃料電池的增溼。而本實驗使用超音波霧化器,取代傳統的壓力式噴霧器,其好處有體積小,系統簡單,且產生粒徑約10μm。實驗透過改變進氣流量、進氣溫度、增溼器水溫,探討該增溼器在不同條件下的增溼效果。根據實驗結果,該實驗設計的增溼器,改變增溼器水溫,可以有效的控制增溼氣體溫度23~73℃。而當進氣流量15~25 slpm,能提供相對溼度接近飽和(>95%RH)的增溼效果。
英文摘要 The proton conductivity largely depended on the extent of hydration state of the membrane of proton exchange membrane fuel cell(PEMFC), and further affects the fuel cell performance. Typically, sufficient membrane hydration is achieved through the humidification of reactive gases prior to feeding them into the fuel cell. Further, hydrogen humidification has a larger impact on the PEMFC performance than cathode side. Injector humidification has been used to humidify reactive gases. In this study, the experiment used the ultrasonic nebulizer to replace the traditional injector. It has the advantages of small volume, simple system and small droplet production (about 10μm). The study examined the humidifier performance by changing the inlet gas flow rate, inlet gas temperature, and the water temperature in the humidifier. The experimental results showed that changing the water temperature in the humidifier can effectively control the outlet temperature between 23~73℃. The humidifier can supply the near saturated gas (>95%RH) when the inlet gas flow rate between 15~25 slpm.
論文目次 第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 增溼器設計目標 5
1.4 文獻回顧 6
1.4.1 增溼器 6
1.4.2 超音波霧化理論 7
第二章 實驗方法與設備 12
2.1 實驗流程 12
2.1.1 造霧器性能測試 12
2.1.2 增溼器性能測試 12
2.2 實驗設備 13
2.2.1 雷射粒徑繞射分析儀-Insitec:EPCS 15
2.2.2 造霧器性能測試設備 18
2.2.3 溫控設備 23
2.2.4 溼度量測設備 26
2.2.5 增溼器 30
2.2.6 流量計 32
2.2.7 資料擷取系統 33
第三章 結果與討論 36
3.1 造霧器性能測試結果 36
3.1.1 造霧量 36
3.1.2 造霧粒徑分佈 37
3.1.3 液滴直徑(DV(50)) 39
3.2 增溼器設計參數 40
3.3 乾溼球溼度計誤差比較 42
3.4 增濕器性能測試結果 43
3.4.1 實驗氣體條件 43
3.4.2 增溼器使用對氣體的影響 43
3.4.3 進氣流量對增溼效果的影響 44
3.4.4 進氣溫度對增溼效果的影響 47
3.4.5 增溼器水溫對增溼效果影響 48
3.4.6 供給燃料電池所需氫氣增溼條件的穩定性 49
第四章 結論與未來工作 53
4.1 結論 53
4.2 未來工作 54
第五章 參考文獻 55
自述 57
參考文獻 第五章 參考文獻
[1] W. A. Stanley, Direct Energy Conversion, Allyn and Bacon Inc., Boston, 1982.
[2] J. W. Tester, E.M. Drake, M. J. Driscoll, M. W. Golay, W. A. Peters, Sustainable Energy, The MIT Press, 2005.
[3] J. P. Evans, “Experimental Evaluation of the Effect of Inlet Gas Humidification on Fuel Cell Performance,” Thesis, Mechanical Engineering Department, Virginia Tech, 2003.
[4] 黃鎮江,“燃料電池”,全華科技圖書股份有限公,2005
[5] J. Larminie, A. Dicks, Fuel Cell Systems Explained, Wiley, 2000.
[6] G. Vasu, A. K. Tangirala, B. Viswanathan, K. S. Dhathathreyan, “Continuous Bubble Humidification and Control of Relative Humidity of H2 for a PEMFC System,” Journal of Hydrogen Energy, vol. 33, pp.4640-4648, 2008.
[7] S. H. Jung, S. L. Kim, M. S. Kim, Y. Park, T. W. Lim. “Experimental Study of Gas Humidification with Injectors for Automotive PEM Fuel Cell Systems,” Journal of Power Sources, vol. 170, pp.324-333, 2007.
[8] J. Zhang, Y. Tang, C. Song, Z. Xia, H. Li, H. Wang, J. Zhang, “PEM Fuel Cell Relative Humidity(RH) and Its Effect on Performance at High Temperature,” Electrochimica Acta, vol. 53, pp.5315-5321, 2008.
[9] W. R. Wood, A. L. Loomis, “The Physical and Biological Effects of High Frequency Sound-Waves of Great Intensity,” Philosophical Magazine, vol. 4, pp. 417-437, 1927
[10] Y. Al-Suleimani, A. J. Yule, A. P. Collins, “How Orderly is Ultrasonic Atomization?” ILASS-Europe, 1999.
[11] L. Kelvin, “Hydrokinetic Solutions and Observations,” Philosophical Magazine, vol. 42, pp. 362-377, 1871.
[12] L. Rayleigh, “On The Crispation of Fluid Resting upon a Vibrating Support,” Philosophical Magazine, vol. 15, pp.50-58, 1883.
[13] T. B. Benjamin, F. Ursell, “The Stability of The Plane Free Surface of A Liquid in Vertical Periodic Motion,” Proc R Soc London A, vol. 225, pp. 505-515, 1954.
[14] V. I. Sorokin, “The Effect of Fountain Formation at the Surface of A Vertically Oscillating Liquid,” Soviet Phys Acoust, vol.3, pp. 281-291, 1957.
[15] R. J. Lang, “Ultrasonic Atomization of Liquids,” The Acoustical Society of America, vol. 34, pp. 6-8, 1962.
[16] K. Sollner, “Trans Mechanism of The Formation of Fogs by Ultrasonic Waves,” Faraday Transactions, vol. 32, pp.1532-1536, 1936.
[17] M. N. Top, “Ultrasonic Atomization – A Photographic Study of The Mechanisms of Disintegration,” Journal of Aerosol Science, vol. 4, pp.17-25, 1927.
[18] J. D. Bassett, W. W. Briht, “Observations Concerning The Mechanism of Atomization in An Ultrasonic Fountain,” Journal of Aerosol Science, vol. 7, pp.47-51, 1976.
[19] F. Barreras, H. Amaveda, A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Experiments in Fluid, vol. 33, pp. 405-413, 2002.
[20] Wedd, M. W., 陳明裕編譯, “Mie Theory and Particle Size Analysis,” Light Scattering, Trekintal corp. Summer 96’ issue, 1996.
[21] Trekintal corp. “雷射繞射粒徑分析儀,” Light Scattering, Winter 99’ issue, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw