進階搜尋


 
系統識別號 U0026-0812200915203048
論文名稱(中文) 水黽腳結構對界面潤濕和踩水浮力影響之研究
論文名稱(英文) The Study of Effects of Water Strider’s Leg Structure to Wettability and Buoyancy
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 李耕同
研究生(英文) Gung-Tung Li
電子信箱 n1696414@mail.ncku.edu.tw
學號 n1696414
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 口試委員-李榮宗
口試委員-李旺龍
口試委員-楊鏡堂
指導教授-林仁輝
中文關鍵字 掃描電子顯微鏡  變形量  接觸角  疏水性  浮力 
英文關鍵字 Deflection  Rough surface  Buoyancy  Contact angle  SEM  Hydrophobic 
學科別分類
中文摘要 本研究的主要目的,是在微奈米尺度下,藉由掃描探針顯微鏡,觀察並討論真實水黽腳表面的剛毛結構,以及踩水時與水的接觸角和潤濕程度受表面粗糙度的影響,並探討水黽腳的彈性模數和整體構造對踩水浮力的影響。首先,本研究先利用掃描電子顯微鏡對水黽腳微結構做詳細觀察,並建立水黽腳表面的剛毛模型。以此模型為基礎,藉由淺深度下壓力的限制,建構合理的水弧面,並利用前進角的概念找出水弧面停滯點位置。由此,可以討論有/無剛毛表面結構下,對整體潤濕程度和接觸角的影響。也將水黽腳從內部剛毛到外部整體腳的接觸角變化做一個完整的連接。
接著,設計一空壓實驗來推算出水黽腳的彈性模數,且因為少了其它節腳和關節的影響,此彈性模數的真實性也較高。然後利用此彈性模數,對水黽腳踩水浮力作一數值運算模擬,建構出在不同踩水深度、入水角度以及水黽腳長度的變形量、浮力、踩深和3D踩水水窪。
最後,探討水黽腳的第三節腳對整體腳踩水浮力的影響,藉由與單一第二節腳的空壓、踩水實驗以及模擬的比較,我們發現第三節腳對整體腳踩水的等效剛性和所受浮力相較於單一第二節腳而言都有明顯的提升。由此可了解到水黽腳的第三節腳對整體腳踩水時的貢獻,除了有帶頭牽引二、三節腳以低角度入水外;也會支撐著前端水弧面,當繼續踩深時,前端不會容易被水覆蓋而使整體腳沒入水中。
英文摘要 In present study, the contact angles has been measured both water strider’s seta and leg, and the meniscus of leg in water is also be calculated and simulated. In this paper, the simulations of seta’s cross-section are considered from the images of SEM, and building up the proper water bridge profile between setae and seta’s groove are based on the limit of pressure. Advance angle theory is applied to find the exact stagnant position of the water bridge on the laterial surface of a groove and two setae. Then show the effect of with or without the seta roughness to final contact angle.
The elastic modulus of water strider’s leg is also be interested, and by designing a simple experiment can lead us to calculate the value. Using the result and a series of numerical schemes, the 3D- dimple, deflection, buoyancy and depth in water can be simulated.
Lastly, discussing the effect of the third section leg to the whole leg. With the result of experiments of the leg, we find that the equivalent stiffness of the leg and the ability of producing buoyancy are greater than the leg withouting the third section.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 本文架構 4
第二章 水黽腳模型建立與理論分析 6
2-1 剛毛模型的建立 6
2-2 水弧面的建立 7
2-2-1 決定剛毛間溝槽水弧面-最小弧長法 7
2-2-2 決定水弧面-前進角的利用 9
2-3 接觸角的計算 11
2-3-1 潤濕程度對接觸角的影響 11
2-3-2 剛毛間接觸角的計算 12
2-4 建立水黽腳在不同深度下的水弧面 14
2-5 水黽腳彈性模數以及踩水變形量的計算 15
2-5-1空壓實驗計算水黽腳的彈性模數 15
2-5-2 水黽腳在踩水條件下 16
第三章 實驗規劃及條件 27
3-1 實驗目的 27
3-2 實驗材料準備 28
3-3 實驗儀器介紹 30
3-3-1 掃瞄電子顯微鏡 (SEM) 30
3-3-2 Hystron Triboscope試驗機 31
3-3-3 CCD camera和Frame Grabber 32
3-4 實驗方法和步驟 33
3-4-1 踩水實驗量測浮力和最大踩水深度 33
3-4-2 空壓實驗量測受力和撓曲 34
3-4-3 觀察蓮葉上水珠與表面的接觸角 34
3-4-4 量測水黽腳的側向力 35
第四章 結果與討論 41
4-1 水黽腳剛毛模型建立 41
4-1-1 掃瞄電子顯微鏡下的水黽腳表面結構 41
4-1-2 掃瞄電子顯微鏡下的水黽腳剛毛結構 42
4-1-3 數值模擬剛毛截面形貌 42
4-2 建立水弧面 43
4-2-1 判斷水弧面的形貌 43
4-2-2 決定停滯點位置並建立水弧面 44
4-3 由空壓實驗來推算彈性模數 45
4-4 模擬水黽踩水所受到的浮力 46
4-5 水黽腳上第三節腳對踩水浮力的影響 47
第五章 結論與未來研究方向 66
5-1 結論 66
5-1-1 水黽腳微結構對潤濕的影響和水弧面的建立 66
5-1-2 水黽腳構造對踩水性質的影響 66
5-2 未來研究方向 68
參考文獻 69
參考文獻 [1] A. W. Adamson, Physical Chemistry of Surfaces, New York, Wiley (1990).
[2] B. Bhushan, Introduction to Tribology, New York, Wiley (2002).
[3] R. Wang; K. Hashimoto; A. Fujishima; M. Chikuni; E. Kojima; A. Kitamura; M. Shimohigoshi and T. Watanabe, “Light-Induced Amphiphilic Surfaces.” Nature 388 (1997) 431.
[4] W. Barthlott, and C. Neinhuis, “Characterization and Distribution of Water -Repellent, Self-Cleaning Plant Surfaces.” Planta 202 (1997) 1.
[5] C. Neinhuis, and W. Barthlott, “Characterization and Distribution of Water -Repellent, Self-Cleaning Plant Surfaces.” Annals of Botany 79 (1997) 667.
[6] B. Vaibhav, and V. G. Suresh, “Electrowetting-Based Control of Static Droplet States on Rough Surfaces.” Langmuir 23 (2007) 4918.
[7] R. N. Wenzel, “Resistance of Solid Surface to Wetting by Water.” Ind. Eng. Chem 28 (1936) 988.
[8] A. B. D. Cassie, and S. Baxter, “Wettability of Porous Surfaces.” Trans. Faraday Soc 40 (1944) 546.
[9] R. N. Wenzel, “Surface Roughness and Contact Angle.” J. Phys. Colloid. Chem 53 (1949) 1466.
[10] A. Marmur, “Wetting on Hydrophobic Rough Surfaces: To be Hetero- geneous or not to be?.” Langmuir 19 (2003) 8343.
[11] D. Quere; A. Lafuma, and J. Bico, “Slippy and Sticky Microtextured Solids.” Nanotechnology 14 (2003) 1109.
[12] N. A. Patankar, “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars.” Langmuir 20 (2004) 8209.
[13] A. Otten, and S. Herminghaus, “How Plants Keep Dry: A Physicist's Point of View.” Langmuir 20 (2004) 2405.
[14] X. B. Zhou, and J. T. M. D. Hosson, “Influence of Surface Roughness on the Wetting Angle.” J. Mater. Res 10 (1995) 1984.
[15] Y. T. Cheng; D. E. Rodak; C. A. Wong, and C. A. Hayden, “Effects of Micro- and Nano-Structures on the Self-Cleaning Behaviour of Lotus Leaves.” Nanotechnology 17 (2006) 1359.
[16] M. Sun; C. Luo; L. Xu; H. Ji; Q. Ouyang; D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting.” Langmuir 21 (2005) 8978.
[17] Y. Zhiqing; C. Hong; T. Jianxin; G. Huifang; L. Yuejun; W. Zhengxiang; S. Pu; Z. Jide, and C. Xin, “A Novel Preparation of Polystyrene Film With a Superhydrophobic Surface Using a Template Method.” J. Phys. D: Appl. Phys. 40 (2007) 3485.
[18] P. Ball, “Engineering Shark Skin and Other Solutions.” Nature 400 (1999) 507.
[19] L. Cheng, “Marine and Freshwater Skaters-Differences in Surface Fine Structure.” Nature 242 (1973) 132.
[20] M. Dickinson, “Animal Locomotion: How to Walk on Water.” Nature 424 (2003) 621.
[21] D. L. Hu; B. Chan, and J. W. M. Bush, “The Hydrodynamics of Water Strider Locomotion.” Nature 424 (2003) 663.
[22] D. L. Hu, and J. W. M. Bush, “Meniscus-Climbing Insects.” Nature 437 (2005) 733.
[23] X. Q. Feng; X. Gao; Z. Wu; L. Jiang, and Q. S. Zheng, “Superior Water Repellency of Water Strider Legs With Hierarchical Structures: Experiments and Analysis.” Langmuir 23 (2007) 4892.
[24] X. Gao, and L. Jiang, “Water-Repellent of Water Striders.” Nature 432 (2004) 36.
[25] M. W. Holdgate, “The Wetting of Insect Cuticles by Water.” J. Exp. Biol. 32 (1955) 591.
[26] J. Israelachvili, Intermolecular and Surface Force, 2nded., Academic Press, New York (1992).
[27] S. C. Chen, “Theoretical Study for Adhesion Force With Surface Roughness and Humidity Effects.” (2008) 47.
[28] Jian-Lin Liu, Xi-Qiao Feng, Gang-Feng Wang, “Buoyant Force and Sink Conditions of a Hydrophobic Thin Rod Floating on Water.” Physical Review E 76, (2007) 066103.
[29] A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed., New York, London, Wiley (1976).
[30] R. C. Hibbeler, Mechanics of Materials, SI Edition, Prentice Hall, Inc., Singapore (2003).
[31] R. P. Evershed*, R. Berstan*, “Water-Repellent Legs of Water Striders.” NATURE 432, Novenber (2004).
[32] S. –M. Lee, and T. H. Kwon, “Effect of Intrinsic Hydrophobicity on Wettability of Polymer Replicas of a Superhydrophobic Lotus Leaf.” J. Micromech. and Microeng. 17 (2007) 687.
[33] J. W. M. Bush; D. L. Hu; M. Prakash, “The Integument of Waterwalking Arthropods: Form and Function.” Adv. Insect Physiol 34 (2007) 117.
[34] S. Vogel, and J. Biosci, “Living in a Physical World VIII. Gravity and Life in water.” BioScience 31 (2006) 309.
[35] SEM的原理及應用, 捷東公司.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw