系統識別號 U0026-0812200915202440
論文名稱(中文) 運動訓練對第一型糖尿病鼠於內毒素血症後腦部細胞激素和相關蛋白的影響
論文名稱(英文) Effects of exercise preconditioning on cytokines and related proteins in the brain of streptozocin-induced diabetic rat after systemic endotoxemia
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 97
學期 2
出版年 98
研究生(中文) 張欣如
研究生(英文) Sin-ru Jhang
學號 t6696109
學位類別 碩士
語文別 英文
論文頁數 46頁
口試委員 指導教授-洪菁霞
中文關鍵字 細胞凋亡    內毒素血症  運動  糖尿病 
英文關鍵字 endotoxemia  exercise  diabetes  brain  apoptosis 
中文摘要 背景及研究目的:隨著社會進步的變遷,糖尿病是成為影響世界最鉅的代謝性疾病。除了高血糖的症狀以外,慢性系統性低度發炎也是其特徵之一。第一型糖尿病主要由於免疫調節不全所造成,牽動巨噬細胞分泌免疫前驅物質,例如間白素-1β(Interleukin-1β, IL-1β)以及腫瘤壞死因子α(TNF-α)進而破壞胰島細胞。然而IL-1β需要經由caspase-1分解才有生物性活化。TNF-α則是會誘發細胞凋亡執行者caspase-3的活化。臨床上,糖尿病患容易受格蘭氏陰性菌細胞壁上的脂多醣體(lipopolysaccharide, LPS)感染,變成內毒素血症,動物實驗也發現發炎狀態與器官組織破壞有相關性。而腦部病變是最近十年來被認定為糖尿病的併發症之一,其細胞凋亡和免疫反應的相關性仍未定論。運動被認為有多效果的治療,也會增加腦部抗凋亡蛋白熱休克蛋白72(HSP72)。因此,本篇實驗在探討第一型糖尿病鼠腦部基礎細胞激素的量、罹患內毒素血症後其免疫系統的反應,以及運動對於腦部免疫功能的效果和凋亡與非凋亡蛋白的表現量。方法:選用八週大成熟雄性Wistar品系鼠,將其分為正常和糖尿病組。再細分為運動和靜態組。運動訓練的劑量為每週五次,每次30分鐘至一小時,速度為每分鐘20公尺到25公尺,為期一個月。並於後一次運動訓練24小時後注射LPS或是生理食鹽水。三小時後取下腦部組織分析。利用酵素結合免疫吸附法(Enzyme-linked immunosobent assay, ELISA)確定免疫前驅物質濃度,和西方墨點法(Western blotting)確認蛋白質的表現量。結果:在海馬迴和前額皮質IL-1β和TNF-α會受到LPS的影響。疾病狀態會影響NTS在TNF-α的表現量,其和LPS在下視丘有交互作用。運動和LPS對於IL-1β在下視丘有交互作用。此外,運動會影響正常大鼠的caspase-1在前額皮質的表現量,也會增加caspase-3在下視丘的表現。除了紋狀體和NTS以外,運動訓練皆會增加腦部HSP72的產生。結論:運動訓練雖然未能完全改變免疫前驅物質的表現量,也會增加正常大鼠凋亡蛋白的表現。然其增加抗凋亡蛋白HSP72的產生,有可能在腦部細胞凋亡佔有重要的角色,仍需更深入的瞭解。
英文摘要 Objective: Because of dysregulation of immune system, diabetic patients had higher rate to suffer from the infection and endotoxemia. Pro-inflammatory cytokines such as interleukin-1beta (IL-1β) was increased during endotoxemia. Interleukin-1beta converting enzyme (Caspase-1 or ICE) and tumor necrosis factor alpha (TNF-α) which induce apoptotic proteins (Caspase-3) were all leading to cells damage. In addition, diabetic rodents had showed higher hippocampal astrocytosis and cell loss. However, exercise may attenuate tissue damage by changng pro-inflammatory cytokines in plasma and inducing anti- apoptotic proteins, heat shock protein 72 (HSP72). The purpose of this study is to determine the effects of exercise on endotoxin-induced immune response, apoptotic and anti-apoptotic proteins expression in the brain of diabetic and normal rats. Materials and Methods: Adult male Wistar rats were treated with streptozotocin to destroy pancreatic β cells irreversibly. Normal and diabetic rats were randomly assigned to exercise and sedentary groups respectively. The exercise groups were trained to run on the treadmill 5 days/week, 30-60 min/day with intensity 20-25m/min for 4 weeks. Twenty-four hours after the last exercise session, rats received an intravenous injection of lipopolysaccharide (LPS) to induce systemic endotoxemia. At the 3rd hour after LPS injection, we determined the level of IL-1β, TNF-α, caspase-1, caspase-3 and HSP-72 in the rat brains including hippocampus, hypothalamus, frontal cortex, striatum, and nucleus tractus solitarius (NTS). Results: After administration of LPS, the TNF-α level was significant increased in hippocampus in normal and diabetic rats. The expression of pro-caspase-1 was increased by healthy condition but not influenced by LPS in hippocampus. The IL-1β level was significant increased in frontal cortex in normal and diabetic rats after LPS injection. There was an interaction between LPS treatment and healthy condition in IL-1β level in hypothalamus. Healthy condition had altered the expression of pro-caspase-3 in hypothalamus. The effect of healthy condition on changing TNF-α level was observed in NTS. The expression of pro-caspase-1 was significant higher increased with exercise pre-conditioning in normal rats’ frontal cortex. Compared exercise groups with sedentary ones, exercise did have effects on HSP72 expression in all brain area except striatum. Considered IL-1β level in hypothalamus, LPS treatment resulted in significant increasing in normal rats, and exercise would interact with LPS treatment in diabetic group. Conclusion: Diabetic rats were prone to apoptosis and inflammatory than normal ones. Exercise can induce protective proteins which alleviate brain cell damage in diabetic rats during systemic endotoxemia.
論文目次 Abbreviations-------------------------------------------------------------------------------------------I
Chinese Abstract----------------------------------------------------------------------------------------------IV
List of figures---------------------------------------------------------------------------------------VIII
Methods and materials---------------------------------------------------------------------------------6
參考文獻 1. Valdez, R., et al., Family history and prevalence of diabetes in the U.S. population: the 6-year results from the National Health and Nutrition Examination Survey (1999-2004). Diabetes Care, 30(10): 2517-22, 2007.
2. Gillespie, K.M., Type 1 diabetes: pathogenesis and prevention. CMAJ, 175(2): 165-70, 2006.
3. Variation and trends in incidence of childhood diabetes in Europe. EURODIAB ACE Study Group. Lancet, 355(9207): 873-6, 2000.
4. Onkamo, P., et al., Worldwide increase in incidence of Type I diabetes--the analysis of the data on published incidence trends. Diabetologia, 42(12): 1395-403, 1999.
5. WHO, 2008.
6. Brands, A.M., et al., Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol, 490(1-3): 159-68, 2004.
7. Orasanu, G. and J. Plutzky, The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol, 53(5 Suppl): S35-42, 2009.
8. Alexandraki, K.I., et al., Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J Clin Immunol, 28(4): 314-21, 2008.
9. Sassy-Prigent, C., et al., Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes, 49(3): 466-75, 2000.
10. Mensah-Brown, E.P., et al., Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine, 31(3): 180-90, 2005.
11. Ariyan, S. and N.A. Halasz, The incidence of postoperative gram-negative shock in diabetics. Am J Med Sci, 254(6): 808-15, 1967.
12. Krause Mda, S. and P.I. de Bittencourt, Jr., Type 1 diabetes: can exercise impair the autoimmune event? The L-arginine/glutamine coupling hypothesis. Cell Biochem Funct, 26(4): 406-33, 2008.
13. Netea, M.G., et al., Interleukin 1 beta, tumour necrosis factor-alpha and interleukin 1 receptor antagonist in newly diagnosed insulin-dependent diabetes mellitus: comparison to long-standing diabetes and healthy individuals. Cytokine, 9(4): 284-7, 1997.
14. Togbe, D., et al., Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol, 88(6): 387-91, 2007.
15. Schnyder-Candrian, S., et al., Dual effects of p38 MAPK on TNF-dependent bronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acute respiratory distress syndrome. J Immunol, 175(1): 262-9, 2005.
16. Annane, D., E. Bellissant, and J.M. Cavaillon, Septic shock. Lancet, 365(9453): 63-78, 2005.
17. Poltorak, A., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282(5396): 2085-8, 1998.
18. Wang, X., et al., Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med, 11(5): 343-53, 2006.
19. Brabers, N.A. and H.S. Nottet, Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest, 36(7): 447-58, 2006.
20. Nicholson, D.W. and N.A. Thornberry, Caspases: killer proteases. Trends Biochem Sci, 22(8): 299-306, 1997.
21. Thornberry, N.A., et al., A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356(6372): 768-74, 1992.
22. Lindberg, C., et al., Neuronal expression of caspase-1 immunoreactivity in the rat central nervous system. J Neuroimmunol, 146(1-2): 99-113, 2004.
23. Fan, T.J., et al., Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 37(11): 719-27, 2005.
24. Wang, L., F. Du, and X. Wang, TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133(4): 693-703, 2008.
25. Clark, R.S., et al., Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J, 13(8): 813-21, 1999.
26. Leibson, C.L., et al., Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol, 145(4): 301-8, 1997.
27. Kodl, C.T. and E.R. Seaquist, Cognitive dysfunction and diabetes mellitus. Endocr Rev, 29(4): 494-511, 2008.
28. Araki, Y., et al., MRI of the brain in diabetes mellitus. Neuroradiology, 36(2): 101-3, 1994.
29. Biessels, G.J., et al., Cerebral function in diabetes mellitus. Diabetologia, 37(7): 643-50, 1994.
30. Ferguson, S.C., et al., Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes, 52(1): 149-56, 2003.
31. Musen, G., et al., Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes, 55(2): 326-33, 2006.
32. Duarte, J.M., et al., Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Exp Neurol, 204(1): 479-84, 2007.
33. Li, Z.G., et al., Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res, 946(2): 221-31, 2002.
34. Sima, A.A. and Z.G. Li, The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes, 54(5): 1497-505, 2005.
35. Ertl, A.C. and S.N. Davis, Evidence for a vicious cycle of exercise and hypoglycemia in type 1 diabetes mellitus. Diabetes Metab Res Rev, 20(2): 124-30, 2004.
36. Guelfi, K.J., et al., Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab, 292(3): E865-70, 2007.
37. Steppel, J.H. and E.S. Horton, Exercise in the management of type 1 diabetes mellitus. Rev Endocr Metab Disord, 4(4): 355-60, 2003.
38. Wallberg-Henriksson, H., et al., Long-term physical training in female type 1 (insulin-dependent) diabetic patients: absence of significant effect on glycaemic control and lipoprotein levels. Diabetologia, 29(1): 53-7, 1986.
39. Chen, Y.W., et al., Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats. Br J Sports Med, 41(9): 597-602, 2007.
40. Hung, C.H., et al., Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke. Shock, 23(5): 426-33, 2005.
41. Gleeson, M., Immune function in sport and exercise. J Appl Physiol, 103(2): 693-9, 2007.
42. Petersen, A.M. and B.K. Pedersen, The anti-inflammatory effect of exercise. J Appl Physiol, 98(4): 1154-62, 2005.
43. Moldoveanu, A.I., R.J. Shephard, and P.N. Shek, Exercise elevates plasma levels but not gene expression of IL-1beta, IL-6, and TNF-alpha in blood mononuclear cells. J Appl Physiol, 89(4): 1499-504, 2000.
44. Pedersen, B.K. and L. Hoffman-Goetz, Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev, 80(3): 1055-81, 2000.
45. Lanneau, D., et al., Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med, 12(3): 743-61, 2008.
46. Garrido, C., et al., Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 5(22): 2592-601, 2006.
47. Takayama, S., J.C. Reed, and S. Homma, Heat-shock proteins as regulators of apoptosis. Oncogene, 22(56): 9041-7, 2003.
48. Beauquis, J., et al., Brain alterations in autoimmune and pharmacological models of diabetes mellitus: focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation, 15(1): 61-7, 2008.
49. Biessels, G.J., et al., Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45(9): 1259-66, 1996.
50. Kuhad, A., et al., Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav, 92(2): 251-9, 2009.
51. Nickerson, M., et al., Physical activity alters the brain Hsp72 and IL-1beta responses to peripheral E. coli challenge. Am J Physiol Regul Integr Comp Physiol, 289(6): R1665-74, 2005.
52. Wu, C.W., et al., Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem, 103(6): 2471-81, 2007.
53. Nareika, A., et al., High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kappaB and AP-1 activities. J Endocrinol, 196(1): 45-55, 2008.
54. Clark, B.D., et al., Detection of interleukin 1 alpha and 1 beta in rabbit tissues during endotoxemia using sensitive radioimmunoassays. J Appl Physiol, 71(6): 2412-8, 1991.
55. Hillhouse, E.W. and K. Mosley, Peripheral endotoxin induces hypothalamic immunoreactive interleukin-1 beta in the rat. Br J Pharmacol, 109(2): 289-90, 1993.
56. McCarthy, D.O., M.J. Kluger, and A.J. Vander, Suppression of food intake during infection: is interleukin-1 involved? Am J Clin Nutr, 42(6): 1179-82, 1985.
57. Opp, M.R., L. Kapas, and L.A. Toth, Cytokine involvement in the regulation of sleep. Proc Soc Exp Biol Med, 201(1): 16-27, 1992.
58. Jeurink, P.V., et al., T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology, 57(2): 91-103, 2008.
59. Mueller, P.J. and E.M. Hasser, Putative role of the NTS in alterations in neural control of the circulation following exercise training in rats. Am J Physiol Regul Integr Comp Physiol, 290(2): R383-92, 2006.
60. Mostarda, C., et al., Benefits of exercise training in diabetic rats persist after three weeks of detraining. Auton Neurosci, 145(1-2): 11-6, 2009.
61. Ghayur, T., et al., Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature, 386(6625): 619-23, 1997.
62. Vincent, J.A. and S. Mohr, Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes, 56(1): 224-30, 2007.
63. Gemma, C., et al., Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci, 26(10): 2795-803, 2007.
64. Gemma, C., et al., Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur J Neurosci, 22(7): 1751-6, 2005.
65. Friedlander, R.M., Role of caspase 1 in neurologic disease. Arch Neurol, 57(9): 1273-6, 2000.
66. Felderhoff-Mueser, U., et al., Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol, 57(1): 50-9, 2005.
67. Yang, Y.M., M. Ramadani, and Y.T. Huang, Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis. World J Gastroenterol, 9(12): 2828-31, 2003.
68. Atalay, M., et al., Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol, 97(2): 605-11, 2004.
69. Najemnikova, E., C.D. Rodgers, and M. Locke, Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones, 12(4): 342-52, 2007.
70. Asea, A., Mechanisms of HSP72 release. J Biosci, 32(3): 579-84, 2007.
71. Lancaster, G.I. and M.A. Febbraio, Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev, 11: 46-52, 2005.
72. Shi, Y., et al., The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaB pathway but not the MAPK pathways. Shock, 26(3): 277-84, 2006.
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-07-23起公開。

  • 如您有疑問,請聯絡圖書館