進階搜尋


 
系統識別號 U0026-0812200915195599
論文名稱(中文) 不同材料界面熱傳之數值與實驗分析
論文名稱(英文) Experimental and Numerical Analysis on Interfacial Heat Transfer between Two Different Materials
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 蘇正熹
研究生(英文) Jheng-Si Su
學號 n9696137
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 口試委員-張建宏
指導教授-趙隆山
口試委員-黃登淵
中文關鍵字 熱傳導  接觸熱阻  界面熱傳係數  逆算法 
英文關鍵字 thermal contact resistance  interfacial heat-transfer coefficient  inverse numerical method  heat conduction 
學科別分類
中文摘要 不同材料接觸的熱傳分析,為本文研究之重點。一般而言,最簡單的研究方法是假設兩材料界面間為完美接觸,即溫度與熱通量在此界面是連續的,但此項假設與真實情況會有差異。在真實情況中,無論兩材料互相接觸的表面是多麼平滑,在微觀上都是粗糙不平的,因而會產生接觸熱阻(thermal contact resistance),影響能量之傳遞。故本文利用數值模擬與實驗對上述之現象進行分析。
在數值模擬方面,使用了有限差分法(Finite difference method)與有限元素法(Finite element method),發現兩種數值方法各有優劣。而在實驗方面,使用了純鐵與純銅作為實驗模型,並對其施加不同功率與壓力,來量測其內部的溫度變化,過程中發現,溫度變化對於接觸熱阻的影響,比實驗模型所承受負載的壓力還來的大。最後將數值模擬配合實驗所測量到的數據,利用最小平方法(least squares method),並且加入了未來溫度的概念來反算無法量測的界面熱傳係數(interfacial heat-transfer coefficient),亦有不錯的效果。
英文摘要 The heat-transfer analysis at the interface of two different materials is the key point of this work. Generally, the simplest way to deal with the interfacial heat transfer is to assume it is perfect contact at the interface between these two materials. However, this assumption deviates from the real situation. In the practical condition, though the contact surfaces of these two materials are very smooth from macro view, they are rough from micro one, which result in thermal contact resistance. Accordingly, the numerical and experimental methods are used to analyze the interfacial heat transfer phenomenon in this paper. In the numerical study, finite difference and finite element methods are utilized. From the computing results, these two methods have their own advantages and disadvantages. In the experimental analysis, pure iron and copper are used as the testing materials. During the heat transfer experiment, different powers and pressures are applied to the materials and the internal temperatures are measured. With the temperature-measure data, the inverse method, including the least square scheme and the future temperature concept, is applied to compute the interfacial heat transfer coefficient. From the results, it can be found that the power effect on interfacial heat transfer coefficient is more significant than the pressure one. With these interfacial heat transfer coefficients, the computed temperature profiles agree well with the experimental ones.
論文目次 摘要......................................................I
致謝....................................................III
目錄.....................................................IV
表目錄..................................................VII
圖目錄.................................................VIII
符號說明................................................XII
第一章 緒論...............................................1
1.1 文獻回顧.............................................2
1.2 研究方法與目的.......................................4
第二章 理論模型...........................................6
2.1 物理模型.............................................6
2.1.1高低溫邊界........................................6
2.1.2邊界溫度隨時間變化................................7
2.2 基本假設.............................................7
2.3 統御方程式...........................................8
2.4 初使與邊界條件.......................................8
2.5 hc之逆算法..........................................10
第三章 實驗方法與設備....................................17
3.1 實驗設備............................................17
3.1.1量測壓力設備.....................................18
3.1.2高低溫控制設備備.................................18
3.1.3溫度擷取設備.....................................18
3.2 實驗模型設計........................................19
3.3 實驗方法與步驟......................................19
3.3.1量測實驗模型溫度分佈的方法.......................20
3.4實驗數據整理和計算...................................21
第四章 數值方法..........................................28
4.1 有限差分法..........................................29
4.1.1 兩材料界面為完美接觸的差分方程式................30
4.1.2 兩材料接觸面含有微小空隙的差分方程式 ...........31
4.2 有限元素法..........................................32
4.2.1 加勒金法(Galerkin’s method)....................33
4.2.2 元素與內插函數..................................34
4.2.3 高斯積分法與Jacobian矩陣........................36
4.2.4 溫度場之元素方程式..............................37
4.2.4.1 兩材料界面為完美接觸的溫度場元素方式........40
4.2.4.2 兩材料接觸面含有微小空隙的溫度場元素方程式..40
第五章 數值方法的驗證....................................46
5.1數值模擬一維之驗證...................................46
5.2數值模擬二維之驗證...................................48
5.3兩種數值模擬的準確度與計算時間.......................49
第六章 結果與討論........................................66
6.1 實驗結果............................................66
6.2 熱傳分析-利用數值模擬本文之實驗模型.................67
6.2.1 實驗模型溫度場之計算............................67
6.2.2 界面熱傳係數之反算..............................68
6.2.3 反算所得界面熱傳係數之驗證......................69
第七章 結論..............................................84
參考文獻.................................................86
附錄A....................................................89
附錄B....................................................93
參考文獻 1. T.N Cetinkale and M. Fishenden, “Thermal Conductance of metallic surfaces in contact”, General Discussion on Heat Transfer, Proc. Inst. Mech Eng.,London Sept. pp.271-275,1951.
2. A. M. Clausing, “Some influence of macroscopic constrictions on the thermal contact conductance”, NASA Report No. ME-TN-242-2, 1966.
3. A. M. Clausing and B. T. Chao, “Thermal Contact Resistance in a vacuum environment”, ASME J. Heat Transfer, 87 No.3, pp.243-251,1965.
4. M. G. Cooper, B. B. Mikic and M. M. Yovanovich, “Thermal Contact Conductance”, Int. J. Heat Transfer, January, pp.279-300, 1969.
5. V. Vodicka, Warmeleitung in geschichteten kugel-undzylinderkorpern, Schweizer Archiv 10,pp.297-304,1950.
6. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids,2nd ed.,Oxford University Press,London,1959.
7. Z.G. Feng, E.E. Michaelides, The use of modified Green’s function in unsteady heat transfer,Int. J. Heat Mass Transfer, Vol.40,pp.2997-3002,1997.
8. R. Siegel,Transient thermal analysis of parallel translucent layers by use Green’s function, J.Thermophysics Heat Transfer, Vol.13, pp.10-17, 1999.
9. F. de Monte.,” Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach,” Int. J. Heat and Mass Transfer, Vol.43, pp.3607-.3619, 2000.
10. F. de Monte.,” Unsteady heat conduction in two-dimensional two slab-shaped regions. Exact closed-form solution and results,” Int. J. Heat and Mass Transfer, Vol.46, pp.1455-.1469, 2003.
11. F. de Monte.,” Multi-layer transient heat conduction using transition time scales,” Int. J. Thermal Sciences, Vol.45, pp.882-.892,2006.
12. W. M. Moses and R. R. Johnson., “An experimental study of the transient behavior of the Thermal Contact Conductance and temperature in periodically contact conductance”, AIAA Paper, No.50 AI-AA-86-1244, 1986.
13. W. M. Moses and R. R. Johnson, “Experimental study of the transient heat transfer across periodically contacting surfaces”, Journal of Thermophysics and Heat Transfer, Vol. 2, pp.37-42, 1988.
14. C. H. Huang and T. M. Ju, “An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine’s exhaust valve and seat”, Int. J. for Numerical Methods in Engineering, Vol. 38, pp.735-754, 1995.
15. 黃志準,王如竹,一種接觸熱阻的預測方法,低溫工程,第六期,pp.40-46, 2000.
16. 趙蘭萍,徐烈,用輪廓離散法研究粗糙表面間的接觸導熱,低溫工程,第六期,pp.52-57, 2000.
17. 趙蘭萍,徐烈,固體界面間接觸導熱的機理和應用研究,低溫工程,第四期,pp.29-34, 2000.
18. A. A. Rostami, A. Y. Hassan, P. C. Lim, “Parametric Study of Thermal Constriction Resistance”, Heat Mass Transfer, Vol. 37, pp. 5-10, 2000.
19. A. K. Das, S. S. Sadhal, “Analytical Solution for Constriction Resistance with Interstitial Fluid in the Gap”, Heat and Mass Transfer, pp. 111–119, 1998.
20. F. Robbe-Valloire and J. Blouet, “A mechanical and geometrical approach to thermal contact resistance,” Heat and Mass Transfer, pp. 1121–1129, 1997.
21. E.G. Wolff and D.A. Schneider, “Prediction of thermal contact resistance between polished surfaces,” Heat and Mass Transfer, pp. 3469–3482, 1998.
22. 李國川,“鑄模與鑄件間之界面熱傳分析”,國立成功大學工程科學系碩士論文,2001
23. 鄭盟傑,“鑄模與鑄件間之界面熱傳分析”,國立成功大學工程科學系碩士論文,2004
24. G.Tr. Stolz, “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes,” ASME Journal of Heat Transfer, Vol.82, pp.20-26, 1960.
25. J.V. Beck, “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Des. , Vol.7, pp.170-178, 1968.
26. J.V. Beck, “Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem ,” International Journal of Heat and Mass Transfer,Vol.13,pp.703-716,1970.
27. J.V. Beck, B. Litkouhi and St. Clair, “Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem,” Numerical Heat Transfer,Vol.5,pp.275-286,1982.
28. 紀欽仁,“逆向熱傳方法之材料熱性質預測”,國立成功大學工程科學系碩士論文,1998
29. D.A. Anderson, C.J. Tannehill and R.H. Pletcher, “Computational Fluid Mechanics and Heat Trans,” Hemisphere, 1990.
30. M.N. özisik, Heat Conduction, second ed., John Wiley&Sons,Inc., New York,1993.
31. R.W. Lewis, The Finite element method in heat transfer analysis, Wiley,Inc., New York, 1996.
32. D. Pepper, W. Heinrich, C. Juan, second ed., The Finite element method: Basic Concepts and Applications.
33. George R. Buchanan, Schaum's outline of Theory and problems of finite element analysis. , New York,1995.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw