進階搜尋


 
系統識別號 U0026-0812200915194484
論文名稱(中文) 用於無粒子流體分離之微流晶片設計
論文名稱(英文) Microfluidic Chip for Particle-free Fluid Sample Separation
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 97
學期 2
出版年 98
研究生(中文) 白璟宜
研究生(英文) Jing-Yi Pai
電子信箱 p4696115@mail.ncku.edu.tw
學號 p4696115
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 口試委員-王覺寬
指導教授-呂宗行
口試委員-陳鴻瑩
中文關鍵字 後向式階梯流  離心力  微機電製程技術 
英文關鍵字 MEMS Fabrication  Centrifugal Force  Backward Facing Step 
學科別分類
中文摘要 目前臨床上血漿與血球分離技術多以設備龐大的離心機分離技術為主,血液分離儀器大小約等同於一張病床之寬度,非常佔用空間,大多需要依賴醫院等地方放置,且分離時需要大量的血液樣本。如果可以將分離血液離心機所佔用的空間減少,並且可以同時減少血液樣本,便可居家自行取樣及檢測,以便隨時監測身體狀況。
本研究主要利用微機電製程技術,設計製作微流道晶片,配合後向式階梯流(backward facing step)設計將流體內粒子分離,並設計不同的入口微流道之幾何結構,進行粒子與流體分離,其中粒子分離之原理是利用流體在微流道分叉處,由主流道中近壁處無粒子的流體層中流入側支管來進行流體與粒子分離,希望藉此原理應用至分離血漿與血球。同時使用CFD-ACETM商用軟體進行模擬計算以配合實驗,以不同雷諾數分析微流道幾何構造,對於不同微流道內之流場變化,以及分離晶片之粒子之分離效率與收集流體的質量流率,進而找出最佳雷諾數對應於微晶片可分離粒子大小之結果與分析。文章中分別對直管以及彎管兩種入口微流道設計做分析比較。本研究發現在入口處為彎管之設計裡,結合微流道產生二次流的影響,其分離效率高於一般入口處為直管幾何設計微流管道。
英文摘要 Human health becomes increasingly important. One of diagnostic method for early detection diseases is immunoassay. For immunoassay, the first step is to separate the whole blood for analysis.
To separate whole blood sample, conventional blood separation machine is need huge equipment. The size of blood separation machine is about a bed-size, so it occupies a lot of space. And abundant blood sample has to supply to the machine. Therefore, blood separation machine only can install the hospital and huge amount of blood samples are wasted for analysis. If one can design a micro-fluidic chip for blood separate that is smaller and can reduce blood sample, it will be convenient to analyze the blood sample at home.
This research used Micro-Electro-Mechanical Systems(MEMS) to design micro-fluidic chip. The micro-fluidic chip has a backward facing step channel design. In this study both of straight channel and 90° elbow channel are designed. CFD-ACETM is used to simulate and find out the best Reynolds number for experiments that particles can be separated. In 90° elbow inlet channel design, secondary flow is found to be key issue for its better performance then straight inlet channel design. Unsteadiness of reattachment point is also found to be the main reason that R=0.5μm particle can’t separate by using only 90° elbow channel. A modified micro-fluidic chip with block and slant wall is demonstrated that can successfully separate R=0.5μm particle.
論文目次 摘要 I
ABSTRACT III
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
圖目錄 VIII
第一章 緒論 1
1–1 前言 1
1-2 研究目的 3
1-3 文獻回顧 4
第二章 微晶片設計 23
2-1 理論模型 23
2-1-1 變形性(deformability) 24
2-1-2 聚集性(aggregation) 24
2-2 血漿撇取效應(PLASMA-SKIMMING EFFECT) 25
2-3 微流道結構設計 28
2-4 數值方法 34
2-5 微晶片製程 41
2-5-1 製程- AZ4620(正光阻) 41
2-5-2 製程- SU8-50(負光阻) 44
2-5-3 微晶片製作 47
2-6 實驗架設 50
第三章 結果與討論 55
3-1 數值模擬結果 55
3-2 實驗結果 82
3-3 討論 87
第四章 結論與建議 92
4-1 結論與建議 92
參考文獻 94
自述 97
參考文獻 [1] T. A. Crowley, V. Pizziconi, “Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,” The Royal Society of Chemistry 2005
[2] C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, W. Menz, “Separation of blood in microchannel bends,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, 2004.
[3] M. Yamada, M. Nakashima, M. Seki, “Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem., 76, 5465-5471, 2004.
[4] J. Takagi, M. Yamada, M. Yasuda, M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab Chip, 5, 778–784, 2005.
[5] M. Yamada, M. Seki, “Hydrodynamic concentration and separation of particles in microfluidic devices,” 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, 2005.
[6] M. Yamada, M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab Chip, 5, 1233–1239, 2005.
[7] M. Yamada, M. Seki, “Microfluidic Particle Sorter Employing Flow Splitting and Recombining,” Anal. Chem., 78, 1357-1362, 2006.
[8] M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, T. Okano, “Microfluidic devices for size-dependent separation of liver cells, Biomed Microdevices 9, 637–645, 2007.
[9] M. Yamada, S. Doi, H. Maenaka, M. Yasuda, M. Seki, “Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis,” Journal of Colloid and Interface Science 321, 401–407, 2008.
[10]J. Park, K. Cho, C. Chung, D.C. Han, J.K. Chang, “Continuous plasma separation form whole blood using microchannel geometry,” Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology Kahuku, Oahu, Hawaii, 2005.
[11]P. Sethu, A. Sin, M.t. Toner, “Microfluidic diffusive filter for apheresis (leukapheresis),” Lab Chip, 6, 83–89, 2006.
[12]X. Chen, D.F. Cui, C.C. Liu, H. Li, “Microfluidic chip for blood cell separation and collection based on crossflow filtration,” Sensors and Actuators B 130, 216–221, 2008.
[13]T-A Crowley, V. Pizziconi, “Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,” Lab Chip, 5, 922–929, 2005.
[14]V. VanDelinder, A. Groisman , ”Separation of Plasma from Whole Human Blood in a Continuous Cross-Flow in a Molded Microfluidic Device,” Anal. Chem , 78, 3765-3771, 2006.
[15]S. Yang, A. Ündar, J.D. Zahn , “A microfluidic device for continuous, real time blood plasma separation,” Lab Chip, 6, 871–880, 2006.
[16]M.J. Madou, L.J. Lee, S. Daunert, S.Lai, C.H. Shih, “Design and
fabrication of CD-like microfluidic platforms for diagnostic: microfluidic functions,” Biomedical Microdevices 3:3, 245-254, 2001.
[17]S. Lai, S. Wang, J. Luo, L.J. Lee, S.T. Yang, M.J.. Madou, “Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay,” Anal. Chem. 76, 1832-1837, 2004.
[18]J. Steigert1, T. Brenner1, M. Grumann1, L. Riegger1, R. Zengerle1, J. Ducree, “Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood,” Proceedings of IEEE MEMS 2006, 22-26, 2006.
[19]J. Steigert1, L. Riegger, M. Grumann, T. Brenner, J. Harter,”Rapid alcohol testing in whole blood by disk-based real-time absorption measurement,” 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences October 9-13, Boston, Massachusetts, USA, 2005.
[20]D.C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard, G.J. Kellogg, ”Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays Anal. Chem. 71, 4669-4678,1999.
[21]A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides1, “Chaotic Mixer for Microchannels,” SCIENCE, 295, 25, 2002.
[22]F. Schönfeld, S. Hardt, “Simulation of Helical Flows in Microchannels,” AIChE Journal, 50, 4, 2004.
[23]D.S. Kim, S.W. Lee, T.H. Kwon, S.S. Lee, “A barrier embedded chaotic micromixer,” J. Micromech. Microeng. 14 798–805, 2004.
[24]L. Wang, J.T. Yang, “An overlapping crisscross micromixer using chaotic mixing principles,” J. Micromech. Microeng. 16, 2684–2691, 2006.
[25]J.T. Yang, K.W. Lin, “Mixing and separation of two-fluid flow in a micro planar serpentine channel,” J. Micromech. Microeng. 16, 2439–2448, 2006.
[26]A. Goullet, I. Glasgow , N. Aubry, “Effects of microchannel geometry on pulsed flow mixing,” Mechanics Research Communications, 33 739–746, 2006.
[27]N.S. Lynn, D.S. Dandy, “Geometrical optimization of helical flow in grooved micromixers,” Lab Chip, 7, 580–587, 2007.
[28] R. Fahræus, T. Lindqvist, “The viscosity of the blood in narrow capillary tubes,” American Journal of Physiology, 96(3), 562-568, 1931.
[29] D.M. Eckmann, S.Bowers, M. Stecker, A.T. Cheung, “Hematocrit, volume Expander, temperature, and shear rate effects on blood viscosity,” International Anesthesia Research Society, 91:539–45, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw