進階搜尋


 
系統識別號 U0026-0812200915192862
論文名稱(中文) 凝血酶調節素之類凝集素結構區透過調控基質金屬蛋白酶抑制小鼠黑色素瘤細胞侵襲爬行和轉移
論文名稱(英文) The Lectin-like Domain of Thrombomodulin Inhibits Murine Melanoma Invasion through Regulating Matrix Metalloproteinase
校院名稱 成功大學
系所名稱(中) 生物化學暨分子生物學研究所
系所名稱(英) of Biochemistry and Molecular Biology
學年度 97
學期 2
出版年 98
研究生(中文) 呂翼均
研究生(英文) Yi-Chun Lu
電子信箱 s1696102@mail.ncku.edu.tw
學號 s1696102
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 口試委員-鄭宏祺
口試委員-張文粲
指導教授-施桂月
口試委員-吳華林
中文關鍵字 none 
英文關鍵字 tumor invasion  matrix metalloproteinase  thrombomodulin 
學科別分類
中文摘要 凝血酶調節素(thrombomodulin, TM)是一個表現於血管內皮細胞表面的穿膜蛋白,在生理上是具有抗凝血功能的重要因子。 而近年來TM被發現也表現於許多腫瘤細胞上,同時也發現TM表現量的多寡和腫瘤的惡性程度呈現負相關;這暗示著TM可能具有抑制腫瘤惡化的作用。 此外,TM也被發現能以游離狀態(soluble form)存在於血液和尿液中,這種游離形式的TM能夠有效地抑制腫瘤細胞的侵襲爬行和轉移,而這樣的抑制效果與其抗凝血功能無關,但卻需要TM的類凝集素功能區(lectin-like domain)參與其中的調控。 本篇研究發現,TM的類凝集素功能區(TMD1)具有能夠抑制腫瘤轉移的作用。 實驗結果顯示,TMD1並不具有細胞毒性,不會引起細胞凋亡,但卻能夠有效地抑制小鼠黑色素瘤細胞B16F10的侵襲爬行,且其抑制效果和施加劑量呈現正相關。 同時,TMD1能夠降低MMP-2活性及其mRNA表現量,並且也能抑制MMP-2上游訊號的活化,如:ERK1/2及Akt。 此外,使用螢光標定的方式顯示,TMD1能夠專一性地黏附於細胞膜上,或許因此影響了細胞的行為表現。 而一個可能的目標是CXCR4 (C-X-C chemokine receptor 4),因為加入CXCR4抗體和CXCR4的配體CXCL12均能夠有效地競爭TMD1與細胞的黏附。 TMD1也確實能夠抑制由CXCL12所引起的腫瘤細胞爬行和MMP-2活性。 另外,TMD1所具有的抑制效果不止是針對黑色素瘤細胞,對於其他腫瘤,如:乳癌和肺癌,同樣也具有明顯的抑制作用。 這些實驗結果顯示,TMD1擁有能作為一個抑制癌細胞轉移之藥物潛能,並且對於多種癌細胞皆能發生作用。
英文摘要 Thrombomodulin (TM) is an integral membrane protein expressed on the endothelial cell surface and first known as an anticoagulant factor. Recently, it is reported that TM is also expressed on the plasma membrane of several tumor cells and the expression level of TM is negatively correlated with cancer malignancy. It was further implicated that TM functions as a negative regulator in tumor progression. Furthermore, soluble TM existing in plasma could suppress tumor invasion and metastasis independent of its anticoagulant activity but involved in its lectin-like domain. In this study, we demonstrated that the lectin-like domain of TM (TMD1) might contribute to the antitumoral function. The invasiveness of murine melanoma B16F10 cells was significantly inhibited by TMD1 in a dose-dependent manner. This inhibitory effect was not due to cytotoxicity of TMD1 because TMD1 didn’t change the cell growth rate. TMD1 could dose-dependently decrease both the proteolytic activity and the mRNA expression of matrix metalloproteinase-2 (MMP-2) in B16F10 cells. Additional, TMD1 reduced the activation of signal pathways related to MMP-2 expression, such as ERK1/2 and Akt signaling. Moreover, rhodamine-labeled TMD1 could bind to B16F10 cells dose- dependently and the binding could be competed by either TMD1 specific antibody or cold TMD1, suggesting that TMD1 might bind to some specific receptors and interfere with the downstream signaling transduction. We identified that one of the possible candidates is C-X-C chemokine receptor 4 (CXCR4)/C-X-C chemokine ligand 12 (CXCL12) axis because TMD1 could inhibit CXCL12-induced MMP-2 activity and cell invasion. Furthermore, the inhibitory effects of TMD1 on MMP-2 activity and ERK1/2 activation could also be observed in different tumor cell types such as A549 (human lung cancer cells) and MDA-MB-231 (human breast cancer cells). The results suggested that TMD1 could be a novel therapeutic antimetastatic drug for various tumor types.
論文目次 Introduction ………………………………………………………1
Materials and Methods ……………………………………………4
Expression and Purification of Recombinant TM domains ……………… 4
Gel Electrophoresis and Western Blotting ………………………………… 6
Gel Staining ……………………………………………………………… 9
Cell Lines and Culture Conditions ……………………………………… 11
Cell Invasion Assay ………………………………………………………… 12
Cell Transendothelial Migration Assay ………………………………… 14
Cell Proliferation Assay …………………………………………………… 15
Zymography Assay ………………………………………………………… 16
RNA Extraction, RT-PCR and Real-time PCR analysis ………………… 18
Flow Cytometry Assay …………………………………………………… 21
Statistic Analysis …………………………………………………………… 23
Results ………………………………………………………………24
Discussion ……………………………………………………………28
Figures ………………………………………………………………32
References ……………………………………………………………45
Appendixes ……………………………………………………………50
Author’s File ………………………………………………………60
參考文獻 1. Guyer B, Martin JA, MacDorman MF, Anderson RN, Strobino DM. Annual summary of vital statistics--1996. Pediatrics 1997;100(6):905-18.
2. Anderson RN. Deaths: leading causes for 2000. Natl Vital Stat Rep 2002;50(16):1-85.
3. Anderson RN, Smith BL. Deaths: leading causes for 2001. Natl Vital Stat Rep 2003;52(9):1-85.
4. Heron M. Deaths: leading causes for 2004. Natl Vital Stat Rep 2007;56(5):1-95.
5. Kung HC, Hoyert DL, Xu J, Murphy SL. Deaths: final data for 2005. Natl Vital Stat Rep 2008;56(10):1-120.
6. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer 2004;4(6):448-56.
7. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2(8):563-72.
8. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003;3(6):453-8.
9. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997;80(8 Suppl):1529-37.
10. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3(5):362-74.
11. Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC. Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 2001;10(2):243-55, vii.
12. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 2002;118(6):915-22.
13. Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett 2007;256(2):137-65.
14. Festuccia C, Angelucci A, Gravina GL, et al. Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination. Thromb Haemost 2005;93(5):964-75.
15. Guo Z, Cai S, Fang R, et al. The synergistic effects of CXCR4 and EGFR on promoting EGF-mediated metastasis in ovarian cancer cells. Colloids Surf B Biointerfaces 2007;60(1):1-6.
16. Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum 2006;49(3):392-8.
17. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Banas T. Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC). Cancer Lett 2007;249(2):171-7.
18. Iwasaki A, Kuwahara M, Yoshinaga Y, Shirakusa T. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) levels, as prognostic indicators in NSCLC. Eur J Cardiothorac Surg 2004;25(3):443-8.
19. Bartolome RA, Galvez BG, Longo N, et al. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res 2004;64(7):2534-43.
20. Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci 2004;36(2):71-8.
21. Li H, Alizadeh H, Niederkorn JY. Differential expression of chemokine receptors on uveal melanoma cells and their metastases. Invest Ophthalmol Vis Sci 2008;49(2):636-43.
22. Suzuki K, Kusumoto H, Deyashiki Y, et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J 1987;6(7):1891-7.
23. Sadler JE. Thrombomodulin structure and function. Thromb Haemost 1997;78(1):392-5.
24. Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989;264(9):4743-6.
25. Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A 1981;78(4):2249-52.
26. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost 2003;1(7):1515-24.
27. Kim SJ, Shiba E, Ishii H, et al. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res 1997;17(3C):2319-23.
28. Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology 1995;21(5):1285-90.
29. Tabata M, Sugihara K, Yonezawa S, Yamashita S, Maruyama I. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med 1997;26(6):258-64.
30. Hanly AM, Redmond M, Winter DC, et al. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer 2006;94(9):1320-5.
31. Tezuka Y, Yonezawa S, Maruyama I, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res 1995;55(18):4196-200.
32. Appleton MA, Attanoos RL, Jasani B. Thrombomodulin as a marker of vascular and lymphatic tumours. Histopathology 1996;29(2):153-7.
33. Lindahl AK, Boffa MC, Abildgaard U. Increased plasma thrombomodulin in cancer patients. Thromb Haemost 1993;69(2):112-4.
34. Furuta J, Kaneda A, Umebayashi Y, Otsuka F, Sugimura T, Ushijima T. Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res 2005;15(1):15-20.
35. Zhou J, Tang ZY, Fan J, Wu ZQ, Ji Y, Ye SL. The potential of plasma thrombomodulin as a biomarker of portal vein tumor thrombus in hepatocellular carcinoma. J Cancer Res Clin Oncol 2001;127(9):559-64.
36. Hanly AM, Winter DC. The role of thrombomodulin in malignancy. Semin Thromb Hemost 2007;33(7):673-9.
37. Green KB, Silverstein RL. Hypercoagulability in cancer. Hematol Oncol Clin North Am 1996;10(2):499-530.
38. Zhang Y, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest 1998;101(7):1301-9.
39. Nakano M, Furutani M, Hiraishi S, Ishii H. Characterization of soluble thrombomodulin fragments in human urine. Thromb Haemost 1998;79(2):331-7.
40. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest 1985;76(6):2178-81.
41. Boehme MW, Galle P, Stremmel W. Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology 2002;107(3):340-9.
42. Ballieux BE, Hiemstra PS, Klar-Mohamad N, et al. Detachment and cytolysis of human endothelial cells by proteinase 3. Eur J Immunol 1994;24(12):3211-5.
43. Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 2004;14(3):236-41.
44. Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett 2000;161(2):231-40.
45. Cornil I, Theodorescu D, Man S, Herlyn M, Jambrosic J, Kerbel RS. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A 1991;88(14):6028-32.
46. Wandel E, Raschke A, Hildebrandt G, et al. Fibroblasts enhance the invasive capacity of melanoma cells in vitro. Arch Dermatol Res 2002;293(12):601-8.
47. Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M. Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 2003;22(20):3162-71.
48. Terranova VP, Hujanen ES, Loeb DM, Martin GR, Thornburg L, Glushko V. Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci U S A 1986;83(2):465-9.
49. Woodward JK, Nichols CE, Rennie IG, Parsons MA, Murray AK, Sisley K. An in vitro assay to assess uveal melanoma invasion across endothelial and basement membrane barriers. Invest Ophthalmol Vis Sci 2002;43(6):1708-14.
50. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006;25(1):9-34.
51. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
52. Hofmann UB, Westphal JR, Waas ET, et al. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 1999;81(5):774-82.
53. Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. Matrix metalloproteinases in human melanoma. J Invest Dermatol 2000;115(3):337-44.
54. Hofmann UB, Eggert AA, Blass K, Brocker EB, Becker JC. Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res 2003;63(23):8221-5.
55. Zhuang L, Lee CS, Scolyer RA, et al. Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol 2005;58(11):1163-9.
56. Smalley KS. A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 2003;104(5):527-32.
57. Mirmohammadsadegh A, Mota R, Gustrau A, et al. ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. J Invest Dermatol 2007;127(9):2207-15.
58. Fromigue O, Hamidouche Z, Marie PJ. Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. J Biol Chem 2008;283(45):30549-56.
59. Lopez-Bergami P, Huang C, Goydos JS, et al. Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell 2007;11(5):447-60.
60. Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 2003;63(9):2172-8.
61. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 2001;98(20):10983-5.
62. Zhang D, Bar-Eli M, Meloche S, Brodt P. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem 2004;279(19):19683-90.
63. Lopez-Bergami P, Fitchman B, Ronai Z. Understanding signaling cascades in melanoma. Photochem Photobiol 2008;84(2):289-306.
64. Zhang S, Qi L, Li M, et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res 2008;27:62.
65. Smith MC, Luker KE, Garbow JR, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004;64(23):8604-12.
66. Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 2004;64(22):8420-7.
67. Murakami T, Maki W, Cardones AR, et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002;62(24):7328-34.
68. Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005;11(5):1835-41.
69. Scala S, Giuliano P, Ascierto PA, et al. Human melanoma metastases express functional CXCR4. Clin Cancer Res 2006;12(8):2427-33.
70. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50-6.
71. Pablos JL, Amara A, Bouloc A, et al. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am J Pathol 1999;155(5):1577-86.
72. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997;185(1):111-20.
73. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121(3):335-48.
74. Kodali R, Hajjou M, Berman AB, et al. Chemokines induce matrix metalloproteinase-2 through activation of epidermal growth factor receptor in arterial smooth muscle cells. Cardiovasc Res 2006;69(3):706-15.
75. Huang YC, Hsiao YC, Chen YJ, Wei YY, Lai TH, Tang CH. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells. Biochem Pharmacol 2007;74(12):1702-12.
76. Wu M, Chen Q, Li D, et al. LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem 2008;103(1):245-55.
77. Buommino E, Baroni A, Canozo N, et al. Artemisinin reduces human melanoma cell migration by down-regulating alphaVbeta3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 2008.
78. Hofmann UB, Westphal JR, Zendman AJ, Becker JC, Ruiter DJ, van Muijen GN. Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type 1 matrix metalloproteinase (MT1-MMP) correlate with melanoma progression. J Pathol 2000;191(3):245-56.
79. Meier F, Busch S, Lasithiotakis K, et al. Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol 2007;156(6):1204-13.
80. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003;22(4):395-403.
81. Epstein RJ. The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer 2004;4(11):901-9.
82. Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 2004;23(1):157-67.
83. Sung B, Jhurani S, Ahn KS, et al. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res 2008;68(21):8938-44.
84. Bartolome RA, Molina-Ortiz I, Samaniego R, Sanchez-Mateos P, Bustelo XR, Teixido J. Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Res 2006;66(1):248-58.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw