進階搜尋


 
系統識別號 U0026-0812200915192152
論文名稱(中文) 有機薄膜電晶體之雙載子電特性研究
論文名稱(英文) Studies of Ambipolar electrical characteristics of organic thin film transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英)
學年度 97
學期 2
出版年 98
研究生(中文) 邱亮雲
研究生(英文) Liang-Yun Chiou
電子信箱 l7695114@mail.ncku.edu.tw
學號 l7695114
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
中文關鍵字 薄膜電晶體  有機半導體  電特性  雙極性電晶體  載子傳輸 
英文關鍵字 Charge transport properties  Thin film transistors  Ambipolar transistors  Electrical properties  Organic semiconductor 
學科別分類
中文摘要 本論文研究可溶液製程與具雙極性傳輸的有機薄膜電晶體之電特性,藉由深入研究元件物理,以期提升元件效能,並觀察具雙載子傳輸特性的電晶體操作與界面特性的關係。論文分為兩部分: 第一部分研究駢苯塞酚衍生物(Triethylsilylethynyl Anthradithiophene, TES-ADT)為主動層的有機薄膜電晶體,此半導體為新穎可溶性的小分子材料,因此可溶液製程元件。本文利用室溫下靜置元件與溶劑退火薄膜的方法來改善TES-ADT薄膜微結構,進而提升元件效能。電晶體元件未經後置處理的場效載子遷移率約10-4至10-3 cm2/Vs,經過甲苯與氯仿溶劑蒸氣退火薄膜的元件,其載子遷移可達10-2 cm2/Vs 以上,此效能在可溶液製程的有機薄膜電晶體領域中已達水平以上。在不破壞TES-ADT薄膜結構的前提下,較高沸點的甲苯是適用於退火過程中的溶劑。
第二部分研究以駢五苯(pentacene)當作主動層的有機薄膜電晶體的雙極性傳輸特性。本文利用高分子修飾層進行二氧化矽表面缺陷修補,成功研製具雙載子傳輸特性的電晶體元件。此高效能雙極性電晶體的電子與電洞場效載子遷移率可分別達0.5 cm2/Vs與1 cm2/Vs以上。深入分析雙極性元件的電特性曲線可細分為線性範圍、飽和範圍與雙極性範圍而不同於一般所知的單載子傳輸元件。雙極性元件的輸出曲線中表現出類似二極體的二次電流曲線,而在飽和轉換曲線中,因為逆向似雙載子電流的影響,表現出“ V ”型累積空乏電流曲線,此為雙極性傳輸電晶體的二大操作特徵。為了解有機半導體與絕緣層的界面特性對電子或電洞傳輸特性的影響,本實驗使用了三種方式來改變介電層的表面特性,獲致下列結果:使用自組裝膜的修飾並不影響雙極性傳輸效能但可阻擋閘極漏電流與調整臨界電壓的;紫外光照射高分子絕緣層將產生許多電子缺陷中心,使雙極性傳輸特性消失,僅具電洞載子傳輸特性;高分子絕緣材料的分子量愈大,將有助於成長具緊密堆積的駢五苯薄膜,因此,雙極性的元件也展現出較佳載子傳輸效率。
英文摘要 In this study, we report on the development and study of the electrical properties for high performance solution-processed small-molecule and ambipolar organic thin-film transistors (OTFTs). This study provides further insight into the physics of OTFT devices and thus helps to clarify and optimize the fabrication procedure and device construction. The study was divided into two parts; in the first part, we studied the effects of post-treatments on the electrical characteristics of soluble-processed triethylsilylethynyl anthradithiophene (TES-ADT) - based OTFTs. After coating the TES-ADT films, the devices were kept at room temperature for several days to improve structural quality, thus electrical properties. Additionally, a solvent vapor annealing procedure was carried out, and we found that the field-effect mobility of TES-ADT OTFTs was significantly enhanced above 10-2 cm2/Vs, as compared to the mobility of the initial device, which was only 10-3~10-4 cm2/Vs. We therefore conclude that toluene is a proper solvent for performing solvent vapor annealing for TES-ADT-based OTFTs to improved electrical performance.
For the second part of this study, we investigated the impact of the interfaces between an organic semiconductor, i.e., pentacene, and various of gate dielectrics on the ambipolar electrical characteristics of OTFTs. We have successfully fabricated pentacene-based OTFTs with ambipolar characteristics by using the polymeric buffer layer to modify the surface trap states of silicon dioxide (SiO2), thus achieving high performance with electron and hole field-effect mobilities up to 0.5 and 1.0 cm2/Vs, respectively. The electrical curves of ambipolar devices can be divided into three regimes, including linear, saturation, and ambipolar regimes, and are different from those of the unipolar devices. In the present devices, we have observed a quasi square ambipolar current in the output curve when applied to the small or zero gate bias and the V-shape current behaviors in the transfer curve. Next, the ambipolar electrical characteristics of pentacene-based OTFTs using SiO2 gate dielectrics with various surface treatments were discussed. By using SiO2 treated with a self-assembled monolayer, the devices still display ambipolar properties but with a threshold voltage shift. At the same time, the gate leakage current could be further reduced. On the other hand, the devices don’t exhibit ambipolar properties when the dielectric surface is exposed to ultraviolet radiation. Finally, the effects of the molecular weight of polymeric modification layers on the ambipolar properties of pentacene-based OTFTs were also studied. We found that the larger the molecular weight of polymeric modification layers, the higher the performance of ambipolar pentacene-based OTFT devices.
論文目次 目次
中文摘要..............................................I
Abstract..............................................III
誌謝..................................................V
目次..................................................VI
表目錄................................................VIII
圖目錄................................................IX
第一章 有機薄膜電晶體簡介............................1
1-1有機光電元件之簡介..................................1
1-2有機薄膜電晶體概論..................................3
1-2-1有機薄膜電晶體的基礎架構........................3
1-2-2高分子修飾層絕緣材料對有機薄膜電晶體之特性影響..3
1-2-3雙極性有機薄膜電晶體的發展與應用................4
1-3場效應電晶體之工作原理..............................6
1-3-1有機薄膜電晶體之操..............................6
1-3-2雙極性有機薄膜電晶體的操作原理與基本特性........8
1-4元件製程與量測分析系統..............................10
1-4-1實驗材料........................................10
1-4-2實驗方法........................................12
1-4-3電特性量測與其他分析系統........................13
1-5本論文之討論與研究目的..............................13

第二章 可溶性駢苯塞酚衍生物主動層之電晶體電特性研究..23
2-1前言................................................23
2-2實驗內容............................................25
2-3結果與討論..........................................26
2-3-1紫外-可見光吸收光譜分析.........................26
2-3-2電特性分析與結果................................26
2-3-3遲滯曲線........................................28
2-4 綜合結論...........................................29

第三章 雙載子五苯環素薄膜電晶體之電特性研究..........40
3-1前言................................................40
3-2實驗方式............................................42
3-3雙極性薄膜電晶體的電特性量測........................43
3-4雙載子通道之電特性分析..............................45
3-4-1雙極性傳輸的電特性圖型..........................45
3-4-2雙極性通道的臨界電壓............................46
3-4-3遲滯現象........................................47
3-4-4自組裝單層膜修飾的影響..........................49
3-4-5紫外光照射對通道極性的影響......................50
3-4-6高分子緩衝層分子量對元件電特性之分析............51
3-5 綜合結論...........................................53

第四章 結論、未來方向與展望..........................74

參考文獻...............................................77

中英對照...............................................84
參考文獻 [1] N. Ide, K. Komoda and J. Kido, “Organic light emitting diode (OLED) and its application to lighting devices”, Proc. of SPIE, 6333, 6330M-1, 2006.

[2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode”, Appl. Phys. Lett., 51, 913, 1987.
[3] A. Facchetti, “Semiconductor for organic transistor”, Mater. today, 10, 28, 2007.
[4] Y. Sun, Y. Liu and D. Zhu, “Advance in organic field-effect transistor”, J. Mater. Chem., 15, 53, 2005.

[5] T. A. Bull, L. C. Pingree, D. S. Ginger and C. K. Luscombe, “The role of mesoscopic PCBM crystallites in solvent vapor annealed copolymer solar cells“, ACS NAno, 3, 627, 2009.

[6] G. Dennler and N. S. Sariciftci, “Flexible conjugated polymer-based plastic solar cells: from basics to applications”, Proc. of the IEEE, 93, 1429, 2005.

[7] J. A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, “Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping”, IEEE Electron Device Lett., 21, 100, 2000.

[8] S. D. Wang, K. Kanai, Y. Ouchi and K. Seki, “Bottom contact ambipolar organic thin film transistor and organic inverter based on C60/pentacene heterostructure”, Org. Electron., 7, 457, 2006.

[9] H. Koezuka, A. Tsumura and T. Ando, “Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.

[10] A. Tsumura, H. Koezuka and Y. Ando, “Polythiophene field-effect transistor:Its characteristics and operation mechanism”, Synth. Met., 25, 11, 1988.
[11] C. Y. Chen and J. Kanicki, “Gated four-probe TFT structure: a new technique to measure the intrinsic performance of a-Si:H TFT”, Proc. of the IEEE, 3014, 70, 1997.

[12] K. Y. Chung, G. W. Neudeck and H. F. Bare, “Analytical modeling of the CMOS-like a-Si:H TFT inverter circuit”, IEEE J. Solid-State Circuits, 23, 566, 1988.

[13] T. Iwasita, X. H. Xia, H. D. Liess and W. Vielstich, “Electrocatalysis of organic oxidations: influence of water adsorption on the rate of reaction”, J. Phys. Chem. B, 101, 7542, 1997.

[14] D. Kumaki, T. Umeda, S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film-film transistors: deprotonation of SiOH on SiO2 gate-insulator surface”, Appl. Phys. Lett., 92, 093309, 2008.

[15] S. Logothetidis, “Flexible organic electronic devices: materials, process and applications”, Mater. Sci. Eng. B, 152, 96,2008.

[16] S. Takamatsu, M. Nikolou, D. N. Bernards, J. DeFranco, G. G.Malliaras, K. Matsumoto and I.shimoyama, “Flexible, organic light-pen input device with integrated display”, Sens. Actuators B-Chem., 135, 122, 2008.
[17] T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi and T. Sakurai, “Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners”, IEEE Trans. Electron Devices, 52, 2502, 2005.
[18] K. Sim, Y. Choi, H. Kim, S. Cho, S. C. Yoon and S. Pyo, “Soluble pentacene thin-film transistor using a high solvent and heat resistive polymeric dielectric with low-temperature processability and its long-term stability”, Org. Electron., 10, 506, 2009.

[19] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Adv. Mater., 14, 99, 2002.

[20] Y. Natsume, T. Minakata and T. Aoyagi, “Pentacene thin film transistors fabricated by solution process with directional crystal growth”, Org. Electron., 10, 107, 2009.

[21] R. M. Glaeser and R.S. Berry, “Mobilities of electrons and holes in organic molecular solids. Comparison of band and hopping models”, J. Chem. Phys., 44, 3797, 1966.

[22] K. Kitamura and Y. Arakawa, “Pentacene-based organic thin film transistor”, J. Phys. -Condes. Matter, 20, 184011, 2008.

[23] M. P. Hong, B. S. Kim, Y. U. Lee, K. K. Song, J. H. Oh, T. Y. Chio, M. S. Ryu, K. Chung, S. Y. Lee, B. W. Koo, J. H. Shin, E. J. Jeong and J. S. Pu, “Recent progress in large sized & high performance organic TFT array”, Dig. Tech. Pap. -Soc. Inf. Disp. Int. Symp., 36, 23, 2005.

[24] M. Uno, Y. Tominari and J. Takeya, “Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators”, Org. Electron., 9, 753, 2008.

[25] M. J. Panzer and C. D. Frishbie, “High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection”, Adv. Funct. Mater., 16, 1051, 2006.

[26] W. H. Lee, H. Kong, S. Y. Oh, H. K. Shim and I. N. Kang,
”Field-effect transistors based on PPV derivatives as a semiconducting layer”, J. Polym. Sci. Poly. Chem., 47, 111, 2009.

[27] H. Klauk, M. Halik, U. Zschieschang, G. Schmid and W. Ralik, “High-mobility polymer gate dielectric pentacene thin film transistors”, J. Appl. Phys., 92, 5259, 2002.

[28] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals”, Science, 303, 1644, 2004.

[29] L. L. Chau, J. Zaumseil, J. F. Chang, E. C. -W. Ou, Peter-K., -H Ho, H. Sirringhaus and R. H. Friend. “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, 434, 194, 2005.

[30] S. Lee, B. Koo, J. Shin, E. Lee and H. Park, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys. Lett., 88, 162109,2006.

[31] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa and Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors”, Nat. Mater., 3, 317, 2004.

[32] W. Michaelis, C. Kelting, A. Hirth, D. Wöhrle and D. schlettwein, “Growth of organic n-conductors on thin polymer films for use in organic field effect transistors.”, Macro. Symp., 212, 299, 2004.

[33] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, “Low-voltage and high-field-effect mobility organic transistors with a polymer insulator”, Appl. Phys. Lett., 88, 072101, 2006.

[34] W. Y. Chou and H. L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin film transistor applications”, Adv. Funct. Mater., 14, 811, 2004.

[35] X. L. Chen, Z. Bao, J. H. Schön, A. J. Lovinger, Y. Y. Lin, B. Crone, A. Dodabalapur and B. Batlogg, “Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers”, Appl. Phys. Lett., 78, 228, 2001.

[36] E. J. Meijer, D. M. Deleeuw, S. Setayesh, E. Vanveenendaal, B. -H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf and T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nat. Mater., 2, 678, 2003.

[37] T. Yasuda, T. Goto, K. Fujita and T. Tsutsui, “Ambipolar pentacene field-effect transistors with calcium source-drain electrodes”, Appl. Phys. Lett., 85, 2098, 2004.

[38] G. Horowitz,“Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.

[39] R. Schmechel, M. Ahles and H. V. Seggrn,“A pentacene ambipolar transistor: Experiment and theory”, J. Appl. Phys., 98, 084511, 2005.

[40] K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony and Y. L. Loo, “Establishing efficient electrical contact to the weak crystals of triethylsilylethynyl anthradithiophene”, Chem. Mater., 19, 5210, 2007.

[41] J. E. Anthony, J. S. Brooks, D. L. Eaton and S. R. Parkin, “Functionalized pentacene: improved electronic properties from control of solid-state order”, J. Am. Chem. Soc., 123, 9482, 2001.



[42] M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo and T. N. Jackson, “Organic field-effect transistors from solution -deposited functionalized acenes with Mobilities as high as 1 cm2/Vs”, J. Am. Chem. Soc., 127, 4986, 2005.

[43] W. H. Lee, D. H. Kim, J. H. Cho, Y. Jang, J. A. Lim, D. Kwak and K. Cho, “Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility”, Appl. Phys. Lett., 91, 092105, 2007.

[44] K. C. Dickey, S. Subramanian, J. E. Anthony, L. H. Han, S. Chen and Y. L. Loo, “Large-area patterning of a solution -processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors”, Appl. Phys. Lett., 90, 244103, 2007.

[45] K. C. Dickey, J. E. Anthony and Y. L. Loo,“Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene”, Adv. Mater., 18, 1721, 2006.

[46] W. H. Lee, J. A. Lim, D. H. Kim, J. H. Cho, Y. Jang, J. I. Han and K. Cho,“Room-temperature self-organizing characteristics of soluble acene field-effect transistors”, Adv. Funct. Mater., 18, 560, 2008.

[47] C. Ucurum, H. Geobel, F. A. Yildirim, W. Bauhofer and W. Krautschneider, “Hole trap related hysteresis in pentacene field-effect transistors”, Appl. Phys. Lett.,104, 084501, 2008.

[48] G. Gu, M. G. Kane and S. C. Mau,“Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 101, 014504, 2007.

[49] M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic Semiconductors”, J. Am. Chem. Soc., 128, 12851, 2006.
[50] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G. Bill and J. L. Brѐdas, “Hole- and electron-vibrational couplings in oligoacene crystals: intermolecular contribution”, Phys. Rev. Lett., 89, 275503, 2002.

[51] N. E. Gruhun, D. A. da Silva Fiho, T. G. Bill, M. Malagoli, V. Coropceanu, A. Kahn and J. L. Bréda. “The vibrational reorganization energy in pentacene: molecular influences on charge transport”, J. Am. Chem. Soc., 124, 7918, 2002.
[52] S. Takebayashi, A. Abe, K. Saiki and K. Ueno, “Origin of the ambipolar operation of a pentacene field-effect transistor fabricated on a poly(vinyl alcohol)-coated Ta2O5 gate dielectric with Au source/drain electrodes”, Appl. Phys. Lett., 94, 083305, 2009.

[53] N. Benson, M. Schidleja, C. Melzer, R. Schmechel and H. V. Seggern, “Complementary organic field effect transistors by ultraviolet dielectric interface modification”, Appl. Phys. Lett., 89, 182105, 2006.

[54] C. Y. Yang, Dhananjay, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu and C. W. Chu, “Balancing the ambipolar conduction for pentacene thin film transistors through bifunctional electrodes”, Appl. Phys. Lett., 92, 253307, 2008.

[55] S. J. Kang, Y. Yi, C. Y. Kim, M. Noh, K. Jeong, K.–H. Yoo, C. N. Whang, “Energy level diagrams of optimized ambipolar organic thin film transistors used pentacene and C60”, Proc. of SPIE, 5940, 594019, 2005.
[56] R. Ye, M. Baba, K. Suziki and K. Mori, “Fabrication of highly air-stable ambipolar thin-film transistors with organic heterostructure of F16CuPc and DH-a6T”, Solid-State Electron., 52, 60, 2008.

[57] R. W. I. deBoer, A. F. Stassen, M. F. Craciun, C. L. Mulder, A. Molinari, S. Rogge and A. F. Morpurgo, “Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors”, Appl. Phys. Lett., 86, 262109, 2005.

[58] T. Takahashi, T. Takenobu, J. Takeya, Y. Iwasa, “Ambipolar organic field-effect transistors based on rubrene single crystals”, Appl. Phys. Lett., 88, 033505, 2006.

[59] N. Benson, M. Schidleja, C. Soil, C. Melzer and H. V. Seggern, “Dielectric interface modification by UV irradiation: a novel method to control OFET charge carrier transport properties”, Proc. of SPIE, 6658, 66580W, 2007.
[60] S. H. Kim, H. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung, C. E. Park, “Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups”, Org. Electron., 9, 673, 2008.

[61] K. N. Narayanan Unni,R. D. Bettignies, S. D. Seignon and J. M. Nunzi, “The memory effect of a pentacene field effect transistor with a polarizable gate dielectric”, Proc. of SPIE, 5351, 166, 2004.

[62] H. L. Cheng, Y. S. Mai, W. Y. Chou and L. R. Chang,“Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors”, Appl. Phys. Lett., 90, 171926, 2007.

[63] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films”, Adv. Funct. Mater., 17, 3639, 2007.

[64] 楊朝宇,“介電層表面特性對有機薄膜電晶體的電性影響研究",國立成功大學光電所碩士論文”, 2007.

[65] 施敏著,黃調元譯,“半導體元件物理與製作技術(第二版)",2006.

[66] 朱治偉,“知識天地 –高效能雙極性有機薄膜電晶體之研究",中央研究院週報,第1162期。

[67] G. Gu, M. G. Kane, J. E. Doty and A. H.Firester , “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 87, 243512, 2005。

[68] D. Braga and G. Horowitz, “High-Performance Organic Field-Effect Transistors”, Adv. Mater., 21, 1473, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw