進階搜尋


 
系統識別號 U0026-0812200915190328
論文名稱(中文) 光流體元件之研究:微稜鏡與液滴光調制器
論文名稱(英文) A Study of Optofluidic Devices: Microprism and Droplet Optical Modulator
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 林琮崳
研究生(英文) Tsung-Yu Lin
學號 N9696134
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 口試委員-駱文傑
口試委員-傅龍明
指導教授-楊瑞珍
口試委員-李國賓
中文關鍵字 光調制器  光流體  微稜鏡  液態光波導  光衰減  折射率  液滴 
英文關鍵字 liquid optical waveguide  optical attenuation  optical modulator  optofluidic  microprism  droplet  refractive index 
學科別分類
中文摘要 本研究使用微機電製程技術於微流體晶片上製作液態光波導元件。藉由流體輸送現象具有整合以及可重新配置之特性,將傳統固態材料之核心層以液態材料取代之,可及時改變核心層之光學性質,進而設計可調式液態光波導元件。本論文主要包含兩部份:(1)微稜鏡分析流體折射率、(2)液滴光調制器。
第一部份,設計兩款折射率分析元件:「微稜鏡」與「折射管道」。微稜鏡之晶片是由液態光波導與微米尺寸之稜鏡管道所構成,將欲分析折射率之流體置於稜鏡管道內。而折射管道之晶片只包含液態光波導管道,並於其輸出端設計45°斜面,將欲分析折射率之流體置於此光波導管道內。兩元件皆藉由光入射固-液界面產生光折射現象,並量測其折射角度,進而推算出折射率。實驗結果發現折射管道之量測準確度較高於微稜鏡,但唯一限制是無法量測比晶片材料折射率低之流體,因為其必須滿足光波導內全內反射之條件,而微稜鏡則沒有此限制。此兩款新穎元件,優勢在於製程簡單、可減少試劑用量、不需昂貴硬體設備,即可準確分析流體之折射率。
第二部份,設計「液滴光調制器」,以PDMS為包覆層材料,選用折射率較高之光學油做為核心層材料,製作液態核心層∕固態包覆層之光波導,並於光學油波導內產生一顆水性液滴(氣泡),當光通過油、水(空氣)界面時,因油、水(空氣)折射率之差異而破壞全內反射現象,造成光衰減效應。實驗結果發現光衰減量會隨著液滴(氣泡)折射率減小而增加,且液滴(氣泡)長度的增長也會導致光衰減量的增加。本實驗改變液滴成份與大小,觀察其對光衰減之影響,並對衰減範圍與飽和現象做深入探討。
英文摘要 In this research, two optofluidic devices were designed, fabricated and tested: (1) simple fluids refractive index detector and (2) droplet optical modulator. These micro-devices were fabricated using the soft lithography technique.
For fluids refractive index detector, two different designs are proposed: microprism type and refraction channel type detector. The microprism type chip consists of the liquid optical waveguide channel and one triangular chamber. The tested fluid (e.g. DI water, CaCl2 aqueous solution, oil etc.) was injected into the triangular chamber. The refraction channel type chip consists of one turning channel. This channel can be regarded as a liquid-core/solid-cladding optical waveguide. The tested fluid was injected as the core layer of the waveguide, and the cladding layer was the chip substrate (PDMS). The refractive index of fluids was calculated using the simple geometrical optics principle. The experimental results showed that the refraction channel type detector performs a better measurement than microprism type detector. However, the limitation of the refraction channel type detector is that the fluids refractive index must be larger than the chip substrate refractive index to satisfy the total internal reflection condition inside the waveguide. The present data showed that the refractive index of fluids was measured accurately by our proposed two novel fluids refractive index detectors. The advantages of the two devices include simple fabrication, low sample consumption and low cost.
The droplet optical modulator comprises one liquid-core/solid-cladding optical waveguide and one droplet/bubble generator (i.e. flow-focusing device). The oil was injected as the carrier phase and the core layer of the waveguide. Air, DI water and CaCl2 aqueous solution were adopted as the dispersed phase, respectively. The different droplet/bubble sizes were created inside the waveguide to destruct the total internal reflection phenomenon and results in optical attenuation. The experimental results showed that the degree of optical attenuation increases as the refractive index of droplet/bubble is decreased. In addition, the optical attenuation increases with increasing the droplet/bubble size and reaches a limiting value.
論文目次 摘 要 I
Abstract II
誌 謝 IV
目 錄 V
表目錄 VII
圖目錄 VIII
符號表 XI
第一章 緒論 1
1-1前言 1
1-2微機電系統 1
1-3微流體與光流體 2
1-4研究動機 3
1-5文獻回顧 4
1-6本文架構 11
第二章 基礎光學理論 12
2-1反射、折射與司乃耳定律 13
2-2反射率與透射率 14
2-3稜鏡與色散現象 18
2-4光波導與全內反射現象 19
2-5光纖原理 21
2-6光損失 23
第三章 光流體晶片設計與製程 26
3-1微稜鏡之設計與實驗方法 26
3-2液滴光調制器之設計與實驗方法 34
3-3光流體晶片製作流程 39
3-3-1光罩製作 39
3-3-2矽晶圓清洗、光阻塗佈、曝光與顯影 40
3-3-3 PDMS晶片翻模技術 44
3-3-4氧電漿表面改質與PDMS晶片封裝 45
3-4實驗設置 47
第四章 實驗結果與討論 52
4-1各種流體之折射率分析 53
4-2液態光波導之導光性與端面耦合測試 57
4-3改變液滴成份與大小之光衰減效應 58
第五章 結論與未來展望 63
5-1結論 63
5-2未來展望 65
參考文獻 66
附 錄 71
自 述 73
參考文獻 1. Whitesides, G.M., “The Origins and the Future of Microfluidics”, Nature, 442, 368-373 (2006)
2. Weibel, D.B.; Whitesides, G.M., “Applications of Microfluidics in Chemical Biology”, Current Opinion in Chemical Biology, 10, 584-591 (2006)
3. Squires, T.M.; Quake, S.R., “Microfluidics: Fluid Physics at the Nanoliter Scale”, Reviews of Modern Physics, 77, 977-1026 (2005)
4. Manz, A.; Graber, N.; Widmer, H.M., “Miniaturized total Chemical Analysis Systems: a Novel Concept for Chemical Sensing”, Sensors and Actuators B-chemical, 1, 224-248 (1990)
5. Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Ludi, H.; Widmer, H.M., “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems-Capillary Electrophoresis on a Chip”, Journal of Chromatography, 593, 253-258 (1992)
6. Neuman, K.C.; Block S.M., “Optical Trapping”, Review of Scientific Instruments, 75, 2787-2809 (2004)
7. Chiou, P.Y.; Ohta, A.T.; Wu, M.C., “Massively Parallel Manipulation of Single Cells and Microparticles Using Optical Images”, Nature, 436, 370-372 (2005)
8. Psaltis, D.; Quake, S.R.; Yang, C.H., “Developing Optofluidic Technology Through the Fusion of Microfluidics and Optics”, Nature, 442, 381-386 (2006)
9. Yang, C.; Psaltis, D., “Optofluidics Can Create Small, Cheap Biophotonic Devices”, Laser Focus World, 42, 85-88 (2006)
10. Kuiper, S.; Hendriks, B.H.W., “Variable-Focus Liquid Lens for Miniature Cameras”, Applied Physics Letters, 85, 1128-1130 (2004)
11. Hendriks, B.H.W.; Kuiper, S.; Van As, M.A.J.; Renders C.A.; Tukker T.W., “Electrowetting-Based Variable-Focus Lens for Miniature Systems”, Optical Review, 12, 255-259 (2005)
12. Moran, P.M.; Dharmatilleke, S.; Khaw A.H.; Tan, K.W.; Chan, M.L.; Rodriguez, I., “Fluidic Lenses with Variable Focal Length”, Applied Physics Letters, 88, 041120 (2006)
13. Dong, L.; Agarwal, A.K.; Beebe, D.J.; Jiang, H., “Adaptive Liquid Microlenses Activated by Stimuli-Responsive Hydrogels”, Nature, 442, 551-554 (2006)
14. Wolfe, D.B.; Conroy, R.S.; Garstecki P.; Mayers, B.; Fischbach, M.; Paul, K.; Prentiss, M.; Whitesides, G.M., “Dynamic Control of Liquid-Core/Liquid-Cladding Optical Waveguides”, Proceedings of the National Academy of Sciences of USA, 101, 12434-12438 (2004)
15. Wolfe, D.B.; Vezenov, D.V.; Mayers, B.T.; Whitesides, G.M., “Diffusion-Controlled Optical Elements for Optofluidics”, Applied Physics Letters, 87, 181105 (2005)
16. Conroy, R.S.; Mayers, B.T.; Vezenov, D.V.; Wolfe, D.B.; Prentiss, M.G.; Whitesides, G.M., “Optical Waveguiding in Suspensions of Dielectric Particles”, Applied Optics, 44, 7853-7857 (2005)
17. Tang, S.K.Y.; Mayers, B.T.; Vezenov, D.V.; Whitesides, G.M., “Optical Waveguiding Using Thermal Gradients Across Homogeneous Liquids in Microfluidic Channels”, Applied Physics Letters, 88, 061112 (2006)
18. Vezenov, D.V.; Mayers, B.T.; Wolfe, D.B.; Whitesides, G.M., “Integrated Fluorescent Light Source for Optofluidic Applications”, Applied Physics Letters, 86, 041104 (2005)
19. Vezenov, D.V.; Mayers, B.T.; Conroy, R.S.; Whitesides, G.M.; Snee, P.T.; Chan, Y.; Nocera, D.G.; Bawendi, M.G., “A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser”, Journal of American Chemical Society, 127, 8952-8953 (2005)
20. Zhu, L.; Huang, Y.Y.; Yariv, A., “Integrated Microfluidic Variable Optical Attenuator”, Optics Express, 13, 9916-9921 (2005)
21. Hu, J.J.; Tarasov, V.; Agarwal, A.; Kimerling, L.; Carlie, N.; Petit, L.; Richardson, K., “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor”, Optics Express, 15, 2307-2314 (2007)
22. Li, X.C.; Wu, J.; Liu, A.Q.; Li, Z.G.; Soew, Y.C.; Huang, H.J.; Xu, K.; Lin, J.T., “A Liquid Waveguide Based Evanescent Wave Sensor Integrated onto a Microfluidic Chip”, Applied Physics Letters, 93, 199901 (2008)
23. Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Origin and Applications of Magnetically Tunable Refractive Index of Magnetic Fluid Films”, Applied Physics Letters, 84, 5204-5206 (2004)
24. Chieh, J.J.; Yang, S.Y.; Chao, Y.H.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Dynamic Response of Optical-Fiber Modulator by Using Magnetic Fluid as a Cladding Layer”, Journal of Applied Physics, 97, 043104 (2005)
25. Chieh, J.J.; Yang, S.Y.; Horng, H.E., “Magnetic Fluid Optical-Fiber Modulators via Magnetic Modulation”, Applied Physics Letters, 90, 133505 (2007)
26. Mach, P.; Krupenkin, T.; Yang, S.; Rogers, J.A., “Dynamic Tuning of Optical Waveguides with Electrowetting Pumps and Recirculating Fluid Channels”, Applied Physics Letters, 81, 202-204 (2002)
27. Cattaneo, F.; Baldwin, K.; Yang, S.; Krupenkine, T.; Ramachandran, S,; Rogers, J., “Digitally Tunable Microfluidic Optical Fiber Devices”, Journal of Microelectromechanical Systems, 12, 907-912 (2003)
28. Hsieh, J.; Mach, P.; Cattaneo, F.; Yang, S.; Krupenkine, T.; Baldwin K.; Rogers, J.A., “Tunable Microfluidic Optical Fiber Devices Based on Electrowetting Pumps and Plastic Microchannels”, IEEE Photonics Technology Letters, 15, 81-83 (2003)
29. Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Rapid Fabrication of a Microfluidic Device with Integrated Optical Waveguides for DNA Fragment Analysis”, Lab on a Chip, 7, 1280-1287 (2007)
30. Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Integrated Wavelength-Selective Optical Waveguides for microfluidic-Based Laser-Induced Fluorescence Detection”, Lab on a Chip, 8, 143-151 (2008)
31. Dong, L.; Jiang, H., “Tunable and Movable Liquid Microlens in Situ Fabricated within Microfluidic Channels”, Applied Physics Letters, 91, 041109 (2007)
32. Dong, L.; Jiang, H.R., “Selective Formation and Removal of Liquid Microlenses at Predetermined Locations within Microfluidics Through Pneumatic Control”, Journal of Microelectromechanical Systems, 17, 381-392 (2008)
33. Chin, L.K.; Liu, A.Q.; Zhang, J.B.; Lim, C.S.; Soh, Y.C., “An on-Chip Liquid Tunable Grating Using Multiphase Droplet Microfluidics”, Applied Physics Letters, 93, 164107 (2008)
34. Hecht, E., “Optics, 4th ed.”, Addison Wesley (2002)
35. Cherin, A.H., “An Introduction to Optical Fibers”, McGraw-Hill (1983)
36. Jaaskelainen, A.; Sivennoinen, R.; Peiponen, K.E.; Raty, J., “On Measurement of Complex Refractive Index of Liquids by Diffractive Element-Based Sensor”, Optics Communications, 178 , 53-57 (2000)
37. Pixton, B.M.; Greivenkamp, J.E., “Automated Measurement of the Refractive Index of Fluids”, Applied Optics, 47, 1504-1509 (2008)
38. Yang, S.Y.; Chen, Y.F.; Horng, H.E.; Hong, H.E.; Hong, C.Y.; Tse, W.S.; Yang, H.C., “Magnetically-Modulated Refractive Index of Magnetic Fluid Films”, Applied Physics Letters, 81, 4931-4933 (2002)
39. Van Keuren, E.R., “Refractive Index Measurement Using Total Internal Reflection”, American Journal of Physics, 73, 611-614 (2005)
40. Jin, Y.L.; Chen, J.Y.; Xu, L.; Wang, P.N., “Refractive Index Measurement for Biomaterial Samples by Total Internal Reflection”, Physics in Medicine and Biology, 51, N371-N379 (2006)
41. Huang, L.D.; Glebov, A.L.; Aoki, S.; Yokouchi, K., “A Novel Method to Measure Refractive Index of Liquid and Curable Liquid Substances”, IEEE Photonics Technology Letters, 16, 1137-1139 (2004)
42. Kou, Q.; Yesilyurt, I.; Studer, V.; Belotti, M.; Cambril, E.; Chen, Y., “On-Chip Optical Components and Microfluidic Systems”, Microelectronic Engineering, 73-4, 876-880 (2004)
43. Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M., “Formation of Droplets and Bubbles in a Microfluidic T-Junction Scaling and Mechanism of Break-Up”, Lab on a Chip, 6, 693-693 (2006)
44. Anna, S.L.; Bontoux, N.; Stone, H.A., “Formation of Dispersions Using Flow Focusing in Microchannels”, Applied Physics Letters, 82, 364-366 (2003)
45. Li, W.; Young, E.W.K.; Seo, M.; Nie, Z.; Garstecki, P.; Simmons, C.A.; Kumacheva, E., “Simultaneous Generation of Droplets with Different Dimensions in Parallel Integrated Microfluidic Droplet Generators”, Soft Matter, 4, 258-262 (2008)
46. Dietrich, N.; Poncin, S.; Midoux, N.; Li, H.Z., “Bubble Formation Dynamics in Various Flow-Focusing Microdevices”, Langmuir, 24, 13904-13911 (2008)
47. McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M., “Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)”, Electrophoresis, 21, 27-40 (2000)
48. Ng, J.M.K.; Gitlin, I.; Stroock, A.D.; Whitesides, G.M., “Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems”, Electrophoresis, 23, 3461-3473 (2002)
49. McDonald, J.C.; Whitesides, G.M., “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices”, Accounts of Chemical Research, 35, 491-499 (2002)
50. Weast, R.C.; Lide, D.R.; Astle, M.J.; Beyer, W.H., “CRC Handbook of Chemistry and Physics, 70th ed.”, CRC, Boca Raton (1989)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw