進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200915185719
論文名稱(中文) TCP/AQM通訊網路系統之強健壅塞控制器設計與實現
論文名稱(英文) Design and Implementation of Robust Congestion Controllers for TCP /AQM Communication Networks
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 陳昌國
研究生(英文) Chang-Kuo Chen
電子信箱 n9893103@ccmail.ncku.edu.tw
學號 N9893103
學位類別 博士
語文別 英文
論文頁數 124頁
口試委員 口試委員-莊智清
口試委員-黃國勝
口試委員-顏錦柱
口試委員-連長華
指導教授-廖德祿
中文關鍵字 通訊網路  亞普諾夫函數  機強健控制  Linux平台  性矩陣不等式  良式基因演算法  變結構控制  線性輸出迴授 
英文關鍵字 Robust stochastic control  Variable structure control  Linear matrix inequality (LMI)  Lyapunov–Krasovskii functional  Communication networks  Improved genetic algorithm  Nonlinear output feedback  Linux platform 
學科別分類
中文摘要 目前在工程與科學領域上,通訊網路已成為一個相當重要的部份。透過不同的網路架構,如:網路節點、傳輸連結及流量來源等,網際網路變成一個全球性的互連網路,將數以百萬的使用者與主機連結在一起。然而,各種異質性的網路與龐大的資訊流量,更提高了網際網路在管理與控制上的複雜度與困難度。同時,網路的使用人數不斷的增加和許多不可預測之干擾,使得網際網路的服務品質無法給予保證。因此,在過去十年裡,網路壅塞成為網際網路上一個主要的問題。如何有效地調整資訊流量避免網路壅塞為一門重要的研究課題。
本論文主要乃探討通訊網路之強健壅塞控制設計與實現問題。首先,考慮以傳送速率為基礎之非線性TCP網路系統,利用可變結構控制理論、非線性輸出迴授控制理論,提出具輸入飽和之非線性壅塞控制器設計,達到期望佇列大小與漸近穩定之目標。第二部份,探討以滑動窗口為基礎且具時間延遲與輸入飽和之非線性TCP網路系統的穩定性問題,並提出改良式基因演算法之比例-微分-積分控制器以及線性狀態迴授控制器確保系統穩定性。第三部份,利用李亞普諾夫函數與線性矩陣不等式最佳化等技巧,提出具雜訊干擾的隨機強健控制器設計,確保閉迴路系統之穩定性並滿足給定之性能指標。最後,透過Linux平台將上述以控制理論提出之壅塞控制器實現於實際網路中,印證所設計之控制器的性能。
英文摘要 Communication network is an essential part for many applications in science and engineering. In particular, based on different network architectures such as various nodes, transmission links and traffic sources, the Internet becomes a global network connecting millions of users and hosts. Unfortunately, the heterogeneity and the large scale in current networks give rise to complexity and difficulty for network management and control. Moreover, the quality of service (QoS) cannot be guaranteed since the number of users is increasing rapidly and there is some unpredictable interference in the networking environment. Therefore, traffic congestion turns out to be one of the major communication problems in Internet. Consequently, how to avoid congestions at bottleneck nodes by regulating the traffic flow and achieve the better performance has been an important issue over the last decade.
In this dissertation, the robust congestion controller design and implementation problems are investigated for TCP communication networks. Firstly, a rate-based non-linear TCP network system with a saturated input is addressed. Based on variable structure control (VSC) and nonlinear output feedback approaches, different kinds of active queue management (AQM) controllers are presented to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop system. Secondly, the linear feedback congestion controller design for nonlinear window-based time-delay TCP network system with input saturation is discussed. An improved genetic algorithm (GA) based Proportional-Integral-Derivative (PID) controller is proposed to guarantee the performances for TCP/AQM networks. State feedback control strategies are developed for the linearized time-delay TCP/AQM model with input saturation. Thirdly, due to the stochastic properties of the communication network, a robust stochastic AQM controller is proposed to guarantee the robustly asymptotically stable in the mean square applying the Lyapunov–Krasovskii functional approach and the linear matrix inequality (LMI) technique, while achieving the prescribed H-infinite disturbance rejection attenuation level of the closed-loop stochastic TCP/AQM system. Finally, based on the Linux platform, the proposed congestion controllers has been implemented to verify the theoretical results. Some illustrative examples performed in the NS2 are given to demonstrate the effectiveness of our main results.
論文目次 中文摘要 I
English Abstract II
Acknowledgements IV
Table of Contents V
List of Tables IX
List of Figures X
Nomenclature XV
Chapter 1 Introduction 1
1.1 Congestion Control for TCP Communication Network 1
1.2 Overview of Previous Work 3
1.3 Problem Describe and Motivation 7
1.4 Brief Sketch of the Contents 8
Chapter 2 Stabilization of Rate-Based TCP/AQM System 11
2.1 Introduction 11
2.2 Nonlinear Rate-Based TCP Dynamics 12
2.3 Variable Structure Controller Design 13
2.3.1 Problem Formulation 13
2.3.2 Main Result 15
2.3.3 Illustrative Examples 15
2.4 Backstepping Controller Design 23
2.4.1 Problem Formulation 23
2.4.2 Main Results 25
2.5 Input-Output Feedback Linearization Controller Design 27
2.5.1 Problem Formulation 27
2.5.2 Main Results 29
2.5.3 Illustrative Examples 31
Chapter 3 Stabilization of Window-Based TCP/AQM System 39
3.1 Introduction 39
3.2 Nonlinear Window-Based TCP Dynamics 40
3.3 GA-Based PID Controller Design 42
3.3.1 Problem Formulation 42
3.3.2 Main Result 43
3.3.3 Illustrative Examples 47
3.4 State Feedback Controllers Design 60
3.4.1 Problem Formulation 60
3.4.2 Main Results 62
3.5 Observer-Based Controllers Design 63
3.5.1 Problem Formulation 63
3.5.2 Main Results 64
3.5.3 Illustrative Examples 67
Chapter 4 Robust Controller Design of Stochastic TCP/AQM System 77
4.1 Introduction 77
4.2 Robust Stochastic Stabilization 79
4.2.1 Problem Formulation 79
4.2.2 Main Result 83
4.3 Robust H∞ Stochastic Control Design 88
4.3.2 Main Results 88
4.3.3 Illustrative Examples 91
Chapter 5 Implementation of AQM Controller by Linux Platform 100
5.1 Introduction 100
5.2 Implementation of AQM as Kernel Modules in Linux 101
5.3 An Illustrative Example 103
Chapter 6 Conclusions and Future Works 108
6.1 Conclusions 108
6.2 Future Works 110
References 112
Vita 121
參考文獻 [1] V. Jacobson, “Congestion avoidance and control,” Proceedings of ACM SIGCOMM’88, pp.314-329, 1988.
[2] R. Srikant, The Mathematics of Internet Congestion Control, Cambridge, MA: Birkhauser, 2004.
[3] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397-413, 1993.
[4] D. Lin and R. Morris, “Dynamics of random early detection,” Proceedings of ACM SIGCOM’97, pp. 127-137, 1997.
[5] T. J. Qtt, T. V. Lakshman and L. H. Wong, “SRED: stabilized RED,” Proceedings of IEEE INFOCOM’99, pp. 1346-1355, 1999.
[6] S. Floyd, R. Gummadi and S. Shenker, “Adaptive RED: an algorithm for increasing the robustness of RED’s active queue management,” , 2001.
[7] W. Feng, D. Kandlur and K. Shin, “Stochastic fair blue: a queue management algorithm for enforcing fairness,” Proceedings of IEEE INFOCOM’01, pp. 1520-1529, 2001.
[8] S. Athuraliya, S. Low, V. Li and Q. Yin, “REM: Active Queue Management,” IEEE Network Magazine, vol. 15, pp. 48-53, 2001.
[9] S. Low, F. Paganini, J. Wang, S. Adlakha and J. Doyle, “Dynamics of TCP/RED and a scalable control,” Proceedings of IEEE INFOCOM’02, pp. 1079-1092, 2002.
[10] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management,” Proceedings of ACM SIGCOM’01, pp, 123-134, 2001.
[11] V. Misra, W. B. Gong and D. Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED,” Proceedings of ACM/SIGCOM, pp.151-16, 2000.
[12] C. V. Hollot, V. Misra, D. Towsley and W. B. Gong, “On designing improved controllers for AQM routers supporting TCP flows,” Proceedings of IEEE INFOCOM, pp.1726-1734, 2001,.
[13] C. V. Hollot, V. Misra, D. Towsley and W. B. Gong, “Analysis and Design of Controllers for AQM Routers Supporting TCP Flows,” IEEE Transactions on Automatic Control, vol. 6, pp. 945-959, 2002.
[14] F. Y. Ren, C. Lin and X. H. Yin, “Design a congestion controller based on sliding mode variable structure control,” Computer Communications, vol. 28, pp. 1050-1061, 2005.
[15] H. Y. Zhang, B. H. Liu and W. H. Dou, “Design of a robust active queue management algorithm based on feedback compensation,” Proceedings of ACM/SIGCOMM’03, pp.277-285, 2003.
[16] C. G. Wang, J. C. Liu, B. Li, K. Sobhraby and Y. T. Hou, “LRED: a robust and responsive AQM algorithm using packet loss ratio measurement,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, pp. 29-43, 2007.
[17] S. M. M. Alavi and M. J. Hayes, “Robust active queue management design: a loop-shaping approach,” Computer Communications, vol. 32, pp. 324-331, 2009.
[18] N. Bigdeli and M. Haeri, “Predictive functional control for active queue management in congested TCP/IP networks,” ISA Transactions, vol. 48, pp. 107-121, 2009.
[19] D. Wang and C. V. Hollot, “Robust analysis and design of controllers for a single flow,” Proceedings of ICCT, pp.276- 280, 2003.
[20] Y. Fan, Z. P. Jiang and S. S. Panwar, “An adaptive control scheme for stabilizing TCP,” Proceedings of 5th World Congress on Intelligent Control and Automation, pp.1410-1414, 2004.
[21] S. Manfredi, M. D. Bernardo and F. Garofalo, “Reduction-based robust active queue management control,” Control Engineering Practice, vol. 15, pp. 177-186, 2007.
[22] S. T. Guo, X. F. Liao and C. D. Li, “Stability and Hopf bifurcation analysis in a novel congestion control model with communication delay,” Nonlinear Analysis: Real World Application, vol. 9, pp. 1292-1309, 2008.
[23] S. T. Guo, G. Feng, X. F. Liao and Q. Liu, “Novel delay-range-dependent stability analysis of the second-order congestion control algorithm with heterogonous communication delays,” Journal of Network and Computer Applications, vol. 32, pp. 568-577, 2009.
[24] S. T. Guo, X. F. Liao, Q. Liu and H. X. Wu, “Linear stability and Hopf bifurcation analysis for exponential RED algorithm with heterogeneous delays,” Nonlinear Analysis: Real World Application, vol. 9, pp. 2225-2245, 2009.
[25] F. Kelly, Mathematical modeling of the Internet, In Mathematics Unlimited-2001 and Beyond, (Editors B. Engquist and W. Schmidt), pp. 685-702, 2001.
[26] P. Yan, Y. Gao and H. Özbay, “A variable structure control approach to active queue management for TCP with ECN,” Proceedings of the Eighth IEEE Symposium on Computers and Communications, pp. 1005-1011, 2003.
[27] X. Chang and J. K. Muppala, “An integral sliding mode based AQM mechanism for stable queue length,” Proceedings of IEEE 2004 Global Telecommunications Conference, pp. 1698-1702, 2004.
[28] J. B. Gao. N. S. V. Rao, J. Hu and J. Ai, “Quasiperiodic route to chaotic dynamics of Internet transport protocols,” Physical Review Letters, vol. 94, pp. 198702.1-198702.4, 2005.
[29] C. Li, G. Chen, X. Liao and J. Yu, “Hopf bifurcation in an Internet congestion control model,” Chaos, Solitons and Fractals, vol. 19, pp. 853-862, 2004.
[30] Z. F. Wang and T. G. Ghu, “Delay induced Hopf bifurcation in a simplified network congestion control model,” Chaos, Solitons and Fractals, vol. 28, pp. 161-172, 2006.
[31] H. Y. Yang and Y. P. Tain, “Hopf bifurcation in REM algorithm with communication delay,” Chaos, Solitons and Fractals, vol. 25, pp. 1093-1105, 2005.
[32] S. T. Guo, X. F. Liao, Q. Liu and C. D. Li, “Necessary and sufficient conditions for Hopf bifurcation in exponential RED algorithm with communication delay,” Nonlinear Analysis: Real World Application, vol. 9, 1768-1793, 2008.
[33] D. W. Ding, J. Zhu and X. S. Luo, “Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm,” Nonlinear Analysis: Real World Application, vol. 9, pp. 824-839, 2009.
[34] L. Chen, X. F. Wang and Z. Z. Han, “Controlling chaos in Internet congestion control model,” Chaos, Solitons and Fractals, vol. 21, pp. 81-91, 2004.
[35] C. L. Liu and Y. P. Tian, “Eliminating oscillations in the Internet by time-delayed feedback control,” Chaos, Solitons and Fractals, vol. 35, pp. 878-887, 2008.
[36] N. Bigdeli and M. Haeri, “Time-series analysis of TCP/RED computer network, an empirical study,” Chaos, Solitons and Fractals, vol. 39, pp. 784-800, 2009.
[37] S. A. Al-Shamali, O.D. Crisalle and H. A. Latchman, “An approach to stabilize linear systems with state and input delay,” Proceedings of American Control Conference, pp. 875-880, 2003.
[38] Z. Artstein, “Linear Systems with Delayed Controls: A Reduction,” IEEE Transaction on Automatic Control, vol. 27, pp. 869-879, 1982.
[39] Y. Y. Cao, Z. Lin and T. Hu, “Stability analysis of linear time-delay systems subject to input saturation,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 49, pp. 233-240, 2002.
[40] V. L. Kharitonov, “Robust Stability Analysis of Time Delay Systems: A Survey,” Annual Reviews in Control, vol. 23, pp. 185-196, 1999.
[41] S. I. Niculescu, J. M. Dion and L. Dugard, “Robust Stabilization for Uncertain Time-Delay Systems Containing Saturating Actuators,” IEEE Transactions on Automatic Control, vol. 5, pp. 742-747, 1996.
[42] C. K. Chen, T. L. Liao and J. J. Yan, “Active queue management controller design for TCP communication networks: variable structure control approach,” Chaos, Solitons & Fractals, vol. 40, pp. 277-285, 2009.
[43] T. L. Liao, C. K. Chen, Y. Y. Hou, J. J. Yan, “Design of active queue management algorithms for TCP networks: nonlinear output feedback approach” submitted for publication to Mathematics and Computers in Simulation, 2009.
[44] C. K. Chen, H. H. Kuo, J. J. Yan, T. L. Liao, “GA-based PID active queue management control design for a class of TCP communication networks,” Expert System with Applications, vol. 36, pp. 1903-1913, 2009.
[45] C. K. Chen, Y. C. Hung, T. L. Liao, J. J. Yan, “Design of robust active queue management controllers for a class of TCP communication networks,” Information Sciences, vol. 177, pp. 4059-4071, 2007.
[46] H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
[47] K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-delay Systems, Massachusetts: Birkhauser, 2003.
[48] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[49] C. K. Chen, J. J. Yan, T. L. Liao, “Robust control for a class uncertain stochastic TCP/AQM system: an LMI-based approach” submitted for publication to Information Sciences, 2009.
[50] B. Bandyopadhyay, S. Janardhanan, Discrete-time sliding mode control, Springer, 2006.
[51] V. I. Utkin, Sliding Mode and their Applications in Variable Structure Systems, Mir Editors, Moscow, 1978.
[52] U. Itkis, Control System of Variable Structure, Wiley, New York, 1976.
[53] UCB, LBNL, VINT, Network Simulator. .
[54] M. Krstic, I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive control design, John Wiley and Sons, 1995.
[55] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.
[56] D. E. Goldberg, Genetic algorithm in search, optimization, and machine learning, reading. MA: Addison Wesley, 1989.
[57] J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 39, pp. 7-21, 1997.
[58] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and mutation in genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics, vol. 24, pp. 656-667, 1994.
[59] Y. J. Cao, “Eigenvalue optimization problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997.
[60] S. Anton, The Control Problem, Prentice-Hall, New York, 1992.
[61] C. Peng and Y. C. Tian, “Network control of linear systems with state quantization,” Information Sciences, vol. 177, pp. 2763-5774, 2007.
[62] B. M. Miller, “Optimization of queuing system via stochastic control,” Automatica, vol. 45, pp. 1423-1430, 2009.
[63] F. Zheng and J. Nelson, “An approach to congestion control design for AQM routers supporting TCP flows in wireless access networks,” Computer Networks, vol. 51, pp. 1684-1704, 2007.
[64] F. Zheng and J. Nelson, “An approach to congestion control design for AQM routers supporting TCP flow,” Automatica, vol. 45, pp. 757-763, 2009.
[65] S. Manfredi, M. D. Bernardo and F. Garofalo, “Design, validation and experimental testing of a robust AQM control,” Control Engineering Practice, vol. 17, pp. 394-407, 2009.
[66] R. Z. Khasminiskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alpen and Den Rijn, Holland, 1980.
[67] N. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbox for use with MATLAB, Boston: The MathWorks, 1995.
[68] T. Azuma, H. Naito and M. Fujita, “Experimental verification of stabilizing congestion controllers using the network testbed,” Proceedings of American Control Conference, pp. 1841-1846, 2005.
[69] P. Sarolahti and A. Kuznetsov. “Congestion control in Linux TCP,” Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference, pp. 49-62, 2002.
[70] W. Almesberger, “Linux Network Traffic Control - Implementation Overview,” Technical Report, EPFL, 1998.
[71] Iperf, .
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2108-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2108-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw