進階搜尋


 
系統識別號 U0026-0812200915182069
論文名稱(中文) 微/奈米管道之濃度極化效應與奈米管道附近非線性電動流動分析
論文名稱(英文) Concentration Polarization in Hybrid Micro/Nanochannels and Analysis of Nonlinear Electrokinetic Flow near a Nanochannel
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 陳籃富
研究生(英文) Lan-fu Chen
電子信箱 n9696130@mail.ncku.edu.tw
學號 n9696130
學位類別 碩士
語文別 中文
論文頁數 58頁
口試委員 口試委員-傅龍明
口試委員-駱文傑
指導教授-楊瑞珍
召集委員-李國賓
中文關鍵字 電動力學  濃度極化  離子排斥  電滲流  離子聚集 
英文關鍵字 electrokinetics  ionic enrichment  ionic depletion  concentration polarization  electro-osmotic flow 
學科別分類
中文摘要 本研究利用微機電製程技術,製作出奈米管道與微米管道,再將晶片對位並置入高溫爐完成熔融接合。當施加電壓於奈微米晶片內部時,由於奈米管道內部電雙層重疊現象,使得奈米管道內部具有離子選擇特性,此特性造成奈米管道內部正、負離子通量之差異,並在奈微米交界處產生濃度極化效應。本文主要探討兩部分: (1) 利用模擬探討電解液濃度與表面電荷密度對奈米管道濃度極化效應之影響,並利用實驗探討不同pH值對濃度極化之影響。(2) 奈米管道附近之非線性電動現象。
第一部分,由於電雙層重疊效應與電解液濃度和表面電荷密度有密切關係,本論文利用模擬2-D奈微米管道,探討在不同電解液濃度與不同表面電荷密度的情形下,使管道內部產生濃度極化時,所需施加之電壓。由模擬結果可知,當濃度越稀、表面電荷密度越大時,使管道內部產生濃度極化的電壓則越小,此外利用實驗探討當電解液NaCl濃度為10-4M在不同pH值下,進行S曲線之電性量測,由實驗結果可知,當pH值越高時,使管道內部產生濃度極化的電壓則越小,而當pH值較低時,所量測到之電流值亦降低。
第二部分,利用電雙層重疊效應,使得奈米管道(鈉玻璃基材)內部正離子通量遠大於負離子。當施加電壓於奈微米管道時,造成管道高電位端產生離子排斥現象,於低電位端產生離子聚集現象。濃度極化效應會造成局部離子空乏現象,並使得管道內部產生濃度梯度。本論文利用管道類比電阻概念,估算離子排斥區域內電導率與電場強度。此外置入螢光微粒於管道內部,探討在不同電壓下,螢光微粒在奈微米管道交界處流動之平均速度。由實驗結果可知,離子排斥區域內,由於電導率下降,使得此區域內電場將被放大並使流體速度增加,而管道內部為滿足質量守恆,在奈微米管道介面處會產生背壓來平衡這流量上的差異,並在奈微米管道介面處附近產生渦流,此對稱渦流速度也隨著電壓增加而變快。
英文摘要 In this work, we present an experimental and numerical investigation on the concentration polarization in hybrid micro/nanochannels. Two issues were investigated: (1) pH value effect on the occurrence of concentration polarization and the I-V curve (i.e. S curve) and (2) nonlinear electrokinetic flow at the interface between micro/nanochannels.
In the first part of this thesis, we explore the voltage required to impose, in different concentration of electrolyte and surface charge density, so that the concentration polarization within channel occured. Results show that the low concentration of the electrolyte and high surface charge density will occur concentration polarization under low voltage. In addition, the experimental results showed that the applied voltage required to produce the concentration polarization decreases with increasing the pH value of the electrolyte.
The second part of this thesis focuses on the flow near the interface of micro/nanochannel. We utilized electrical measurements and evaluated the electrical conductivity and the electrical field within the depletion region. Fluorescent particles are injected into the channel to observe flow field near nano/microchannel interface. Results show that the electrical conductivity were decreased and the electrical field were increased in depletion region and fast fluid vortices were generated at the anodic side of the nanochannel due to the nonequilibrium electroosmotic flow.
論文目次 中文摘要 I
Abstract III
目錄 V
表目錄 IX
圖目錄 X
符號表 XIII
第一章 緒論 1
1.1 前言 1
1.2 微機電系統 2
1.3 微流體晶片 3
1.4 本文架構 4
第二章 電動現象、晶片製作與實驗設備 5
2.1基礎理論 5
2.1.1 電雙層 5
2.1.2 電滲流 6
2.1.3 電雙層重疊效應 7
2.1.4 濃度極化 8
2.2 微流體晶片製作 9
2.2.1 光罩繪製與製作 9
2.2.2 基材(晶片)清洗 9
2.2.3 光阻塗佈 10
2.2.4 曝光 10
2.2.5 顯影 11
2.2.6 蝕刻 11
2.2.7 光阻去除 12
2.2.8 玻璃晶片對位及熔接接合 12
2.3 實驗設置 12
2.3.1 顯微鏡 13
2.3.2 電源供應器 13
2.3.3 影像擷取單元(CCD) 13
2.3.4 微電流量測平台 14
第三章 探討奈/微米管道介面處濃度極化現象 15
3.1序論 15
3.2基本假設 16
3.3統御方程式 16
3.3.1 描述電滲流流場之Navier-Stokes方程式 16
3.3.2 描述電雙層分布的Poisson-Boltzmann方程式 17
3.3.3 描述正、負離子分佈之Nernst-Planck方程式 19
3.4結構設計、參數定義、邊界條件與網格驗證 20
3.4.1 結構設計 20
3.4.2 參數定義 20
3.4.3 邊界條件 21
3.4.4 網格驗證 21
3.5 探討濃度極化效應在不同表面電荷密度與電解液濃度之變化情形 23
3.5.1 不同表面電荷密度產生濃度極化所須施加的電壓大小 24
3.5.2 不同電解液濃度產生濃度極化所須施加的電壓大小 24
3.6 探討電解液在不同pH值對於濃度極化效應之影響 25
3.7 結論 26
第四章 奈米管道附近之非線性電動現象 27
4.1序論 27
4.2晶片幾何設計與實驗操作條件 28
4.3 實驗結果與討論 28
4.3.1 離子排斥區域內之電導率與電場強度 29
4.3.2 奈微米交接處附近之流場情形 30
第五章 總結與未來展望 32
5.1總結 32
5.2未來展望 33
參考文獻 34
附錄一 模擬2-D奈微米管道交界處流場情形 57
自述 58
參考文獻 [01] Vorst, O., Kok E. J., Peijnenburg A, Aharoni A, Van Tunen A. J., Keijer J, Van H. A., Van H. N., “The application of DNA microarrays in gene expression analysis ” , Journal of Biotechnology, 78, 271-280, 2000.
[02] Erill, I, Villa, R, Goudignon, P, Fonseca, L, Plaza, JA ,“Silicon microsystem passivation for high-voltage applications in DNA chips”, Microeletronics and Reliability, 40, 787-789, 2000.
[03] Manz, A., Harrison, DJ, Verpoorte, E. M. J., Fetitinger, J. C., Paulus, A., Widmer, H. M. “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip”, Journal of Chromatography A, 593, 253-258, 1992.
[04] Manzs, A., Graber, N., Widmer, H. M., Actuators B1, 244-248, 1990
[05] Trieu, H. K., Ewe, L., Mokwa, W., Schwarz, M., and Hosticka, B. J., “Flexible silicon structures for a retina implant ”, IEEE MEMS 98, 515-519, 1998
[06] Reyes, D. R., Lossifidis D., Auroux P. A. and Manz, A., “Micro total analysis system Ι : introduction, theory and technology”, Analytical Chemistry, 74, 2623-2636, 2002
[07] Gravesen, P., Branebjerg O. J. and Jensen, S. “Microfluidic- a review”, Journal of Micromechanics and Microengineering, 3, 168-182, 1993.
[08] Harrison, D. J. and Berg, A., “Micro Total Analysis System 98”, Kluwer Academic Publishers, Netherland 1998.
[09] Shoji, S., “Microfabrication technologies and micro-flow devices for chemical and bio-chemical micro flow system”, Microprocesses and Nanotechnology, 99, 72-73, 1999
[10] Chang, C. C., Yang, R. J., “A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3-D microchannels with patterned charged surfaces”, Journal of Micromechanics and Microengineering, 16, 1453-1462, 2006.
[11] Russel, W. B., Saville, D. A. and Schowalter, W. R. Colloid science : principle and applied mathematics, Cambridge University Press, Cambridge, 1989.
[12] Hunter, R. J., Zeta potential in colloid science: Principles and applications, academic press, New York, 1981.
[13] Probstein, R. F. Physicochemical hydrodynamics: an introduction , John Wiley and Sons, New York, 1994.
[14] Yang, R. J., Fu, L. M., Lin Y. C., “Electroosmotic entry flow in microchannels”, Journal of Colloid and Interface Science, 239, 98-105, 2001.
[15] Lyklema, J., “Electrokinetics after smoluchowski”, Colloids and Surface a-Physicochemical and Engineer Aspects, 222, 5-14 , 2003.
[16] Patankar, N. A., Hu, H. H., “Numerical simulation of electroosmotic flow”, Analytical Chemistry, 70, 1870-1881. 1998.
[17] Wu, J.T., Du, J. R., Juang, Y. J. and Wei, H.H. ”Rectified elongational streaming due to asymmetric electro-osmosis induced by ac polarization”, Applied Physics Letters 90, 134103, 2007.
[18] Wu, J., ”Biased AC Electro-Osmosis for On-Chip Bioparticle Processing”, IEEE Transactions on nanotechnology, 5, 84-89, 2006.
[19] Yang, C., Li, D. and Masliyah, J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects”, International Journal of Heat and Mass Transfer, 41, 4229-4249 , 1998.
[20] Van, T.G.M., Ven, de, Colloidal hydrodynamics. Academic Press, San Diego, 1989.
[21] Babeshko, V. A., Zabolotskii, V. I., Korzhenko, N. M., Seidov, R. R., and Urtenov, M. K., ”Decomposition of non-one-dimensional system of Nernst-Plank-Poisson equations”, Doklady Akademii Nauk, 361, 45-46, 1998.
[22] Jin, X. Z., Joseph, S., Gatimu, E. N., Bohn, P. W., and Aluru, N. R., ”Induced electrokinetic transport in micro-nanofluidic interconnect devices”, Langmuir 23 , 13209-13222, 2007.
[23] Gross, R.J. and Osterle, J.F., “Membrane transport characteristic of ultrafine capillaries”, Journal of Chemical Physics , 49, 228-234, 1968.
[24] Plecis, A., Schoch, R.B. and Renaud, P. “Ionic transport phenomena in nano- fluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip”, Nano Letters, 5, 1147-1155, 2005.
[25] Lin, G. H., Lee, G. B., Lin, Y. H. and Chang, G. L., “A fast prototyping process for fabrication of microfluidic system on soda-lime glass”, Journal Microme- chanics and Microengineering, 11, 726-732, 2001.
[26] Rubinstein, I. and Htilman, L. “Voltage against current curves of cation exchange membranes”, Chemical Science, 231-246, 1979.
[27] Barragan, V. M. and Ruız-Bauza, C. “Current-voltage curves for ion-exchange membranes: A method for determining the limiting current density”, Journal of Colloid and Interface Science, 205, 365-373, 1998.
[28] Rubinstein, I. and Zaltzman, B. “Electro-osmotically induced convection at a permselective membrane”, Physical Review E, 62, 2238-2251, 2000.
[29] Yossifon, G., Mushenheim, P., Chang, Y.C., and Chang H. C., “Nonlinear current-voltage characteristics of nanochannels”, Physical Review E, 79, 046305, 2009.
[30] Dukhin, S. S., “Electrokinetic phenomena of the second kind and their applications”, Advances in Colloid and Interface Science, 35, 173-196, 1991
[31] Dukhin, S. S., and Mishchuk, NA (1993). “Intensification of electrodialysis based on electroosmosis of the 2nd kind”, Journal of Membrane Science, 79, 199-210, 1993.
[32] Ben, Y., and Chang, H. C. (2002). “ Nonlinear Smoluchowski slip velocity and micro-vortex generation”, Journal of Fluid Mechanics, 461, 229-238, 2002
[33] Taskhistov, P., Duginova, K., Chang, H. C., “Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions”, Journal of Colloid and Interface Science, 263, 133-143, 2003.
[34] Kim, S. J., Wang, Y. C., Lee, J. H., Hongchul, J. and Han, J. “Concentration polarization and nonlinear electrokinetic Flow near a Nanofluidic Channel”, Physical Review Letter, 99, 044501, 2007.
[35] Kim, S. J., Li, D. L. and Han, J., “Amplified electrokinetic response by concen- tration polarization near nanofluidic channel”, Langmuir, 2009.
[36] Pu, Q. S., Yun, J. S., Temkin, H., and Liu, S. R., “Ion-enrichment and ion deple- tion effect of nanochannel structures”, Nano Letter, 4, 1099-1103, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw