進階搜尋


 
系統識別號 U0026-0812200915175837
論文名稱(中文) 監督模糊類神經控制器於兩輪行動載具之研究
論文名稱(英文) Study of Supervisory Fuzzy Neural Network Controller for Two-Wheeled Mobile Vehicle
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 陳郁仁
研究生(英文) Yu-ren Chen
學號 n9696405
學位類別 碩士
語文別 英文
論文頁數 65頁
口試委員 口試委員-謝聰列
口試委員-黎碧煌
口試委員-任才俊
指導教授-陳添智
口試委員-林清一
中文關鍵字 兩輪行動載具  監督模糊類神經 
英文關鍵字 TWMV  Supervisory FNN 
學科別分類
中文摘要 在本篇論文中,將兩輪行動載具的設計及數學模型的推導視為主要的重點。兩輪行動載具主要藉由兩個獨立的車輪來驅動,可用於搭載人員或是物品,而其所有的行動方式都與其車輪息息相關。
藉由Euler-Lagrange 的方法,推導出兩輪行動載具的數學模型,並藉由推導的結果,了解到兩輪行動載具是一個複雜且極為不穩定的系統。為了良好的控制兩輪行動載具且使其穩定,在本篇論文中提出了監督模糊類神經控制方法。監督模糊類神經控制器是由模糊類神經控制器以及監督控制器組合而成,在控制器中的所有參數皆可以立即的調整,以避免系統參數的改變及雜訊的影響。將所設計的控制器與外部周邊的元件做結合,兩輪行動載具的控制系統即設計完成。
最後,藉著模擬及實作的結果來顯示控制系統的響應,藉以證明控制器的可行性與兩輪載具的效能。
英文摘要 In this thesis, a two-wheeled mobile vehicle (TWMV) control system design and its mathematical model deriving are present. The TWMV is driven by the two independent
wheels and all of its motion only depends on them. Iit can be used to transfer human or things.
The mathematical model of the TWMV is derived by the Euler-Lagrange method in the thesis. Owing to the result, motion of the TWMV is a complicated and unstable system.
In order to stabilize the TWMV and control, a supervisory fuzzy neural network controller(FNN) is proposed in the thesis. The supervisory FNN controller is composed of a
supervisory controller and a FNN controller, and the parameters of the controller are tuning on-line automatically to overcome the disturbances and the parameter variations. By the proposed controller and the off-the-shelf parts, the laboratory-typed TWMV is constructed.
At last, the simulations and experiment results are revealed to demonstrate the feasibility of the proposed controller and show the performance of the proposed
laboratory-typed TWMV.
論文目次 Chinese Abstract Ⅰ
Abstract Ⅱ
Acknowledgement Ⅲ
Contents Ⅳ
List of Tables and Figures Ⅵ
Symbols Ⅷ
Chapter 1 Introduction 1
Chapter 2 The Dynamical Model of the TWMV 7
2.1 The Background of the TWMV 7
2.2 Modeling of the TWMV 8
Chapter 3 Supervisory Fuzzy Neural Network Controller 15
3.1 The Control Scheme 15
3.2 The Principle of Fuzzy neural network 17
3.3 The Supervisory Fuzzy Neural Network
Controller Design 20
3.4 Electrical Differential Mechanism 26
3.5 Simulation of Supervisory Fuzzy
Neural Network Controller 28
Chapter 4 Experiments 41
4.1 Physical structure 43
4.2 Experimental Results 55
Chapter 5 Conclusion and Suggestions 60
5.1 Conclusion 60
5.2 Suggestion 61
Reference 62
Vita 65
參考文獻 [1] Segway human transporter (2004). [Online] Availiable: http://www.segway.com
[2] F. Grasser, A. D’Arrigo, S. Colombi and A. C. Ruffer, “JOE: a mobile, inverted pendulum,” IEEE Trans. on Industrial Electronics, vol. 49, Feb. 2002, pp. 107-114.
[3] T. Blackwell, “Building a Balancing Scooter,” http://www.tlb.org/scooter.html
[4] C. M. Lin and C. F. Hsu, “Supervisory RFNN Control Wing Rock for Slender Delta Wings,” IEEE Trans. on Fuzzy Systems, vol. 12, no. 5, Oct. 2004, pp. 733-742.
[5] F. J. Lin, W. J. Hwang and R. J. Wai, “A Supervisory Fuzzy Neural Network Control System for Tracking Periodic Input,” IEEE Trans. on Fuzzy Systems, vol. 7, no. 1, Feb. 1999, pp. 41-52.
[6] C. H. Wang, H. L. Liu, and T. C. Lin, “Direct Adaptive Fuzzy Neural Control with State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems,” IEEE Trans. on Fuzzy Systems, vol. 10, no. 1, Feb. 2002, pp. 39-49.
[7] F. J. Lin and P H Shen, “Adaptive Fuzzy Neural Network Control for DSP-Based Permanent Magnet Linear Synchronous Motor Servo Driver,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 4, August 2006, pp. 481-495.
[8] F. J. Lin, P. K. Hung and W. D. Chou, “ Recurrent Fuzzy Neural Network Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms,” IEEE Trans. on Industrial Electronics, vol. 54, no.3, June 2007, pp. 1449-1461.
[9] R. H. Abiyev and O. Kaynak, “Fuzzy Wavelet Neural Networks for Identification and Control of Dynamic Plants-A Novel Structure and a Comparative Study,” IEEE Trans. on Industrial Electronics, vol.55, no.8,Aug. 2008, pp. 3133-3140.
[10] C. F. Juang, “A TSK-type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms,” IEEE Trans. on Fuzzy Systems, vol.10, no. 2, April 2002, pp. 155-170.
[11] F. J. Lin and P. H. Shen, “Robust Fuzzy Neural Network Sliding-Mode Control for Two-Axis Motion Control System,” IEEE Trans. on Industrial Electronics, vol. 53, no. 4, August 2006, pp. 1209-1225.
[12] C. F. Juang and Y. W. Tsao, “A Self-Evolving Interval Type-2 Fuzzy Network with Online Structure and Parameter Learning,” IEEE Trans. on Fuzzy Systems, vol. 16, no. 6, Dec. 2008, pp. 1411-1424.
[13] F. J. Lin, P. H. Shen, S. L. Yang and P. H. Chou, “Recurrent Radial Basis Function Network Control for Permanent-Magnet Linear Synchronous Motor Servo Drive,” IEEE Trans. on Magnetics, vol. 42, no. 11, Nov. 2006, pp. 3694-3705.
[14] C. Quek, M. Pasquier and B. B. S. Lim, “POP-Traffic: A Novel Fuzzy Neural Approach to Road Traffic Analysis and Prediction,” IEEE Trans. on Intelligent Transportation Systems, vol. 7, no. 2, June 2006, pp. 133-146.
[15] J. Zhang and A. J. Morris, “Fuzzy Neural Networks for Nonlinear Systems Modeling,” IET Proc. Control Theory and Application, vol. 142, no. 6, Nov. 1995, pp. 551-561.
[16] D. G. Stavrakouds and J. B. Theochairs, “Pipelined Recurrent Fuzzy Neural Networks for Nonlinear Adaptive Speech Prediction,” IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 37, no. 5, Oct. 2007, pp. 1305-1320.
[17] K. Pathank, J. Franch and S. K. Agrwal, “Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization,” IEEE Trans. on Robotics, vol. 21, no. 3, June 2005, pp. 505-513.
[18] A. Salerno and J. Angeles, “A New Family of Two Wheeled Mobile Robots: Modeling and Controllability,” IEEE Trans. on Robotics, vol. 23, no. 1, February 2007, pp. 169-173.
[19] G. O. Mutambrar and H. F. Durrant-Whyte, “Estimation and Control for Module Wheeled Mobile Robot,” IEEE Trans. on Control Systems Technology, vol. 8, no. 1, January 2000, pp. 35-46.
[20] C. Ward and K. Iagnemma, “A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain,” IEEE Trans. on Robots, vol. 24, no. 4, August 2008, pp. 821-831.
[21] T. J. Ren and T. C. Chen, “Modeling and Control a Power-assisted Mobile Robot Based on Torque Observer,” IET control Theory Appl., vol. 1, no. 5, Sept. 2007, pp. 1405-1412.
[22] A. Ferrara and M. Rubagotti, “Second-Order Sliding-Mode Control of a Mobile Robot Based on a Harmonic Potential Field,” IET Control Theory Application, vol. 2, no. 9, Sept. 2008, pp. 807-818.
[23] C. H. Wang, T. C. Lin and H. L. Liu, “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems,” IEEE Trans. on Systems, Man and Cybernetics, vol. 32, no.5, Oct. 2002, pp. 583-597.
[24] F. J. Lin, P. H. Shen and R. F. Fung, “RFNN Control for PMLSM Drive via Backstepping Technique,” IEEE Trans. on Aerospace and Electronic Systems, vol. 41, no. 2, April 2005, pp. 620-635.
[25] R. J. Wai, F. J. Lin, R. Yong Duan, Kuan-Yun Hsieh, and Jeng-Dao Lee, “ Robust FNN Control for Linear Ceramic Motor Drive Via Backstepping Design Technique,” IEEE. Trans. on Fuzzy Systems, vol. 10, no. 1, Feb. 2002, pp. 102-112.
[26] F. J. Lin and R. J. Wai, “Hybrid Control Using Recurrent Fuzzy Neural Network for Linear-Induction Motor Servo Drive,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 1, Feb. 2001, pp. 102-114.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw