進階搜尋


 
系統識別號 U0026-0812200915172184
論文名稱(中文) Sn/3.8Ag/0.7Cu不同應變率或溫度下疲勞初始壽命預估-含損傷內涵時間黏塑性理論之應用
論文名稱(英文) Prediction of Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder with Strain Rate or Temperature Effect - Application of The Damage-Coupled Endochronic Viscoplasticity
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 孫佳暐
研究生(英文) Chia-wei Sun
電子信箱 n9696421@mail.ncku.edu.tw
學號 n9696421
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 口試委員-江國寧
指導教授-李超飛
口試委員-光灼華
口試委員-劉德騏
中文關鍵字 Sn/3.8Ag/0.7Cu銲錫  equiaxed structure  含損傷內涵時間黏塑性理論  動態再結晶  cooling rate  疲勞初始壽命 
英文關鍵字 dynamic recrystallization  fatigue initiation life  cooling rate  Sn/3.8Ag/0.7Cu  Endochronic viscoplasticity with damage  equiaxed structure 
學科別分類
中文摘要 本文以內涵時間黏塑性理論依Zeng及Shang等人對Sn/3.8Ag/0.7Cu銲錫(equiaxed)於298K、應變率 之實驗數據為對象,利用2008年歐士豪碩士論文中之核心函數及本文建立之應變率敏感函數 ,計算循環穩態應力-應變遲滯曲線其結果與實驗相當吻合,其循環應力-非彈性應變曲線,隨應變率上升往高應力值向上平移。疲勞壽命除 外,其餘壽命對 之分佈無明顯之不同。以Endochronic疲勞壽命預估公式在 、不同應變率下以 vs. 作圖可得一曲線,並在 下可以三段Coffin-Manson直線表示。在 下,進行循環損傷參數( 、n)之外插,以直線方式將壽命預估推廣至 。由於 之試棒製作冷卻速率較快,疲勞壽命較短,壽命預估時 對應 之值向上平移修正,即可得理想之結果。
本文再以Shang等人對上述銲錫於 、不同溫度下(T=298K~393K)之實驗為依據,擴大內涵時間黏塑性理論中核心函數與溫度的關係,其模擬結果與實驗數據相當貼合。在 、各溫度下,以 及 決定參數n為0.7。在動態再結晶影響下,晶粒細化而導致微裂紋增加,溫度從298K升高, 之值亦隨之上升,但對 分佈之趨勢與298K時相同。以Endochronic疲勞壽命預估公式在 及各溫度下進行預估,以 vs. 作圖可得一曲線,結果與實驗數據相當吻合,且各溫度趨勢一致。
英文摘要 In this paper, the kernel function and the strain rate sensitive function in the Endochronic viscoplasticity was established by using the paper of Ou and Sn/3.8Ag/0.7Cu (equiaxed structure) experimental data of Zeng and Shang et. al., in the room temperature 298K and strain rate . The cyclic stress-strain hysteresis loops and the experimental data were in very good agreement, and the stress raised with increased strain rate in the cyclic stress-inelastic strain curve. Then, the Endochronic fatigue life relationship was used to predict the fatigue initiation life of different strain rate, and the results could represented by Coffin-Manson relationship at . The cyclic damage parameter of ( , n) were extrapolated at , and the fatigue life would be extend to in linearly. The specimen of has shorter fatigue life cause of the faster cooling rate, then the ideal results would be shift the parameter under fatigue life prediction.
The kernel function with temperature relationship in Endochronic viscoplasticity was broadened by using experimental data of Shang et. al., in different temperature and strain rate , then the results and the experimental data were in very good agreement. The parameter n=0.7 determinated by and under and at different temperature. Microcracks increasing resulted from finer grain under dynamic recrystallization. As the temperature raising from 298K, will increases as well, but the trends of distribution were as the same as it was at 298K. The Endochronic fatigue life relationship was used to predict the fatigue initiation life under different temperature. The fatigue life can be shown by vs. plot, then the results and the experimental data were in very good agreement, and the trend was the same at different temperature.
論文目次 摘 要...............................................I
Abstract ...........................................II
誌 謝..............................................IV
目 錄...............................................V
表目錄............................................VIII
圖目錄............................................VIII
符號說明...........................................XIV
第一章 緒論.........................................1
1-1 前言.............................................1
1-2 研究動機.........................................1
1-3 文獻回顧.........................................2
1-3-1 Sn/3.8Ag/0.7Cu銲錫材料文獻回顧 .................2
1-3-2 內涵時間黏塑性理論文獻回顧.....................4
第二章 內涵時間黏塑性理論............................6
2-1 內涵時間黏塑性理論...............................6
2-2 含損傷之增量式內涵時間黏塑性理論.................9
2-3 內涵損傷下演化方程式............................10
2-4 單軸循環損傷與非彈性應變之關係..................12
第三章 Sn/3.8Ag/0.7Cu銲錫內涵時間黏塑性理論在定溫及對不同應變率下初始疲勞壽命之預估............................16
3-1 本章介紹........................................16
3-2 定應變振幅、不同應變率下材料函數 之決定.........16
3-3循環損傷因子(含臨界)之決定.......................20
3-4 不同應變率下循環應力-非彈性應變關係式...........24
3-5不同應變率下Endochronic疲勞初始壽命預估..........25
3-5-1 參數 之計算與討論.............................25
3-5-2 Endochronic疲勞初始壽命之預估.................27
3-6 Endochronic對疲勞初始壽命外插之應用.............30
第四章 Sn/3.8Ag/0.7Cu銲錫內涵時間黏塑性理論對定應變率及不同溫度下疲勞初始壽命之預估............................33
4-1 本章介紹........................................33
4-2 Sn/3.8Ag/0.7Cu銲錫於基準溫度298K及應變率 下核心函數之決定..................................................33
4-2-1 材料參數 之決定...............................35
4-2-2 材料參數K及 之決定............................35
4-2-3 以指數遞減函數近似核心函數....................36
4-3 Sn/3.8Ag/0.7Cu銲錫在不同溫度下核心函數之決定....38
4-3-1 材料參數 之決定...............................38
4-2-2 材料參數 及 之決定............................39
4-2-3 以指數遞減函數近似核心函數....................40
4-4不同溫度下循環應力-非彈性應變關係式..............41
4-5 不同溫度下循環損傷因子( 、n)之決定..............42
4-5-1 之決定.......................................42
4-5-2 動態再結晶影響下 之決定.......................44
4-6不同溫度下Endochronic疲勞初始壽命預估............46
第五章 結論........................................48
附 表..............................................51
附 圖..............................................54
參考文獻...........................................117
自 述.............................................120
參考文獻 [1]Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Cyclic Softening of the Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy with Equiaxed Grain Structure,” Journal of Electronic Materials, Vol. 34, No.1, pp.62-67, 2005.
[2]Shang J. K., Zeng Q. L., Zhang L., and Zhu Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. In Electron., Vol. 18(1-3), pp. 211-227, 2007.
[3]Zeng Q. L., Wang Z. G., and Shang J. K., “Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-free Solder,” Key Engineering Materials, Vols. 345-346, pp.239-242, 2007.
[4]Kanchanomai C., Miyashita Y., Mutoh Y., and Mannan S. L., “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn–3.5Ag,” Material Science and Engineering A 345, pp.90-98, 2003.
[5]Kanchanomai C., Mutoh Y., “Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn-Ag Eutectic Solder,” Material Science and Engineering A 381, pp.113-120, 2004
[6]Zhu Q. S., Wang Z. G., Zeng Q. L., Wu S. D., and Shang J. K., “Rapid Cycle-Dependent Softening of Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Journal of Material Research., Vol. 23, No. 10, pp.2630-2638, 2008.
[7]Zhu Q. S., Wang Z. G., Wu S. D., and Shang J. K, “Enhanced Rate-Dependent Tensile Deformation in Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Material Science and Engineering A 502, pp.153-158, 2009.
[8]Lee C. F., and Shieh T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech., Vol. 22, No.3, pp.181-191, 2006.
[9]Lee C. F., and Chen Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” J. of Mech., Vol. 23, No.4, pp. 433-444, 2007.
[10]歐士豪,含損傷內涵時間黏塑性理論對Sn/Ag/Cu銲錫低應變率疲勞及熱循環耦合循環熱-力行為及不同應變率疲勞初始壽命預估,
碩士論文-國立成功大學工程科學系,2008。
[11]Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅠ. General Theory,” Archives of Mechanics, pp. 517-533, 1971.
[12]Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅡ. Application to Mechanical Behavior of Metal,” Archives of Mechanics, pp. 535-551, 1971.
[13]Lee C. F., “Recent Finite Element Applications of the Incremental Endochronic Plasticity,” International Journal of Plasticity, Vol. 11, No.7, pp. 843-865, 1995.
[14]Lee C. F., “Numerical Method of the Incremental Endochronic Plasticity,” The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992.
[15]Stolkarts, V., Keer, L. M., Fine, and M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp.2451-2468, 1999.
[16]Lau J. and Dauksher W., “Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints,” IEEE Electronic Components and Technology Conference, pp. 1292-1298, 2005.
[17]Lee C. F., Lee Z. H., and Ou S. H., “The Endochronic Viscoplasticity for Sn/3.9Ag/0.6Cu Solder Under Low Strain Rate Fatigue Laoding Coupled Thermal Cycling,” J. of Mech., Vol. 25, No.3, pp. 261-270, 2009.
[18]Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw