進階搜尋


 
系統識別號 U0026-0812200915162097
論文名稱(中文) 氣渦輪引擎偏離設計點性能衰退趨勢模擬與預測
論文名稱(英文) Prediction and simulation of performance deterioration on off-design point for gas turbine engine
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 97
學期 2
出版年 98
研究生(中文) 郭瀚森
研究生(英文) Han-Sen Kuo
電子信箱 p4795107@mail.ncku.edu.tw
學號 p4795107
學位類別 碩士
語文別 中文
論文頁數 114頁
口試委員 口試委員-賴維祥
口試委員-吳龍男
指導教授-尤芳忞
中文關鍵字 氣渦輪引擎  穩態  暫態  偏離設計點  失速裕度  性能參數 
英文關鍵字 transient  stall margin  performance parameter  steady state  off-design point  gas turbine engine 
學科別分類
中文摘要 本論文基於研究之宗旨,乃引用GSP模擬軟體在氣渦輪引擎(Gas Turbine Engine)偏離設計點(off-design point)研究領域具備成熟模擬功能的特性,假設渦輪引擎處於穩態(steady state)與暫態(transient)模式操作下,模擬其面臨失效因子時之性能衰退趨勢。研究時選用軸流式近似J85系列渦噴引擎做為模擬對象,在不考慮使用可變幾何系統或放氣瓣等控制系統之原則下,假設引擎自最大燃油流量轉速減至地面慢車轉速流量,再加速回至原流量值,分別舉常見外在不穩定因子的「FOD/鳥擊」及「吸入熱氣」與內在不穩定因子的「葉尖間隙增大」及「渦輪元件腐蝕」當作失效因子,剖析該等因子構成性能衰退的關鍵參數,並對各參數值取平均變率輸入GSP模擬性能衰退平台,以獲得壓縮器效率、渦輪效率、淨推力及推力比燃油消耗之重要性能參數輸出值與趨勢圖,以及經過尺度化(scaling)後之壓縮器特徵圖,據此量測性能衰退前後之操作線與失速線的壓縮比,同時計算衰退前後之失速裕度。根據研究發現:
無論是內在或外在不穩定因子均使引擎淨推力於減速暫態時出現衰退情形,而加速暫態淨推力受某些失效因子影響所出現的短暫提升現象,主要係引擎高轉速或高機械軸功效率而產生的慣性效應所致,惟當引擎回復至穩態運轉後,其整體性能即呈現全面衰退趨勢;此外本論文亦藉暫態失速裕度(Stall Margin)計算求解程序,開發一套「驗測穩態與暫態性能衰退前後之失速裕度近似關係」,可為後續探討各型渦輪引擎性能衰退預測之參考。
英文摘要 The study is based on GSP software with its mature characteristics on the simulation of off-design conditions for gas turbine engine. It is used to simulate and predict performance deterioration due to a turbojet axial engine(similar to J85 dry model) suffering from a variety of failure factors in steady state and transient conditions. It is assumed that fuel flow from maximum power to ground idle rotational speed by deceleration then back to maximum by acceleration without using variable geometry system or control bleed valve simultaneously. Four failure cases were simulated which include internal instability owing to “increase tip clearance” and “turbine erosion”, and the external instability owing to “FOD or bird ingestion” and “hot gas ingestion”. All of the critical parameters affecting performance deterioration from these cases have been analyzed and to study the engine failure/malfunctions modes and symptoms. The average percentage of variation for each critical parameter is used as input to GSP components deterioration tabsheet respectively, and to obtain graphical output of performance parameters with compressor efficiency, turbine efficiency, net thrust and thrust specific fuel consumption. The pressure ratio of equilibrium running line and stall line also measured as to relate whether undeterioration or deterioration in order to calculate stall margin by means of compressor characteristic map. In accordance with this results, it is observed that in decelerated transient, both internal instability and external instability factors can create net thrust deterioration. In accelerated transient, net thrust will be temporarily upgraded by the factors due to the inertia effects with the engine in high rotational speed as well as the high mechanical shaft efficiency, however, the final net thrust is shown a deterioration trends on returning to steady state. In addition, a measured method which named “approximate balance for stall margin of undeterioration and deterioration during steady state and transient” is also suggested by this study.
論文目次 誌謝....................................................................................................................I
中文摘要..........................................................................................................II
英文摘要........................................................................................................ III目錄.................................................................................................................IV
表目錄............................................................................................................ Ⅵ圖目錄......................................................................................................... VIII
符號說明..................................................................................................XI
第一章 前言.....................................................................................................1
1.1 研究目的................................................................................................1
1.2 文獻回顧................................................................................................3
1.3 論文架構................................................................................................9
第二章 渦輪引擎系統元件與理論分析.......................................................10
2.1 引擎模擬對象選用……..……………………………………………10
2.2 引擎系統元件與操作原理概述.……………………………………11
2.3 元件穩態操作特性分析……………………………………………16
2.3.1 進氣段…………………………………………………………16
2.3.2 壓縮段…………………………………………………………18
2.3.3 燃燒段…………………………………………………………19
2.3.4 渦輪段…………………………………………………………22
2.3.5 排氣噴嘴段……………………………………………………24
2.4 壓縮元件特徵圖與失速裕度………………………………………26
第三章 模擬工具與方法…………………………………………………28
3.1 引擎性能模擬工具…………………………………………………..28
3.1.1 GSP模擬軟體介紹……………………………………………28
3.1.2 GSP性能模擬方法……………………………………………30
3.2 性能模擬步驟………………………………………………………..31
3.3 性能模擬條件假設…………………………………………………..40
第四章 結果與討論.......................................................................................37
4.1 偏離設計點性能衰退探討..................................................................37
4.2 引擎性能衰退評量指標......................................................................39
4.2.1 性能衰退後重要參數變異情形……………………………….39
4.2.2 性能衰退後失速裕度計算……………………………………39
4.3 失效因子與相關文獻實例探討..........................................................41
4.3.1 「FOD/吸鳥」失效因子…………………………………………41
4.3.2 「吸入熱氣」失效因子………………………………………….43
4.3.3 「葉尖間隙增加」失效因子…………………………………….45
4.3.4 「渦輪元件腐蝕」失效因子…………………………………….47
4.4 性能衰退關鍵參數評估......................................................................47
4.5 偏離設計點性能衰退趨勢模擬暨失速裕度探討..............................49
4.5.1 「FOD/吸鳥」因子暨關鍵參數模擬結果分析…………………49
4.5.2 「吸入熱氣」因子暨關鍵參數模擬結果分析…………………60
4.5.3 「葉尖間隙增因加」因子暨關鍵參數模擬結果分析…………71
4.5.4 「渦輪元件腐蝕」因子暨關鍵參數模擬結果分析……………82
4.6偏離設計點性能衰退趨勢探討與預測.............................................93
4.7穩態與暫態性能衰退前後失速裕度之近似關係...............................95
第五章 結論..................................................................................................96
5.1 主要研究成果...................................................................................96
5.2 後續研發展望...................................................................................98
第六章 參考文獻...........................................................................................99
第七章 附錄.................................................................................................102
第八章 自述 ...............................................................................................114
參考文獻 [1] 高廣權,分流式渦扇發動機系統模擬與特徵微變效應之研究,碩士論文,國防大學中正理工學院兵器工程研究所,桃園,第28頁,2001。
[2] 潘彥良,氣渦輪引擎壓縮器操作特徵與失速界限之理論研究,碩士論文,國防大學中正理工學院兵器工程研究所,桃園,第41頁,2002。
[3] 陶遵極,噴射發動機,科學圖書大庫,財團法人徐氏基金會出版,
高雄,第42頁,1992。
[4] 郭功儁,基本噴射引擎,科學圖書大庫,財團法人徐氏基金會出版,台北,第12至16頁,2003。
[5] A. Zwebek and P. Pilidism,“Degradation Effects on Combined Cycle Power Plant Performance-Part Ι: Gas Turbine Cycle Component Degradation Effects,”Journal of engineering for Gas and Power,
Vol.125, p.651-653, 2003.
[6] Frank J. Brooks, GE Gas Turbine Performance Characteristics
, GE Power Systems GER-3567H, New York, p.14-15, 2000.
[7] FSF Library Staff, Flight Safety Digest,“Understanding Airplane Turbofan Engine Operation Helps Flight Crews Respond to
Malfunctions,” Flight Safety Foundation, Vol. 20 No.3, p.10-16, 2001.
[8] Gordon C. Oates, Aircraft propulsion systems technology and
design, AIAA Education Series, p.346-349, Washington, 1989.
[9] H. Cohen, G.F.C. Rogers and HIH Saravanamuttoo, Gas Turbine
Theory 4th edition, Longman Group Limited, England, p.178-
179 & p.385-386, 1996.
[10]W.J. Hesse, and N.V.S.Jr. Mumford, Jet Propulsion for
Aerospace Application, 2nd ed., Texas, 1970.
[11]J. Kurzke,“Advanced User-Friendly Gas Turbine Performance Calculation on a Personal Computer,” ASME Paper No.95-GT-147,
1995.
[12]Klaus Hunecke, Jet Engines/Fundamental of Theory, Design
and Operation, Motorbooks International Publishers & Wholesalers,
England, p.23-25, 1998.
[13]J. Kurzke, “A Program to Calculate Design and Off-Design
Performance of Gas Turbines,” GasTurb 7.0 Users Manual, 1996.
[14]National Aerospace Laboratory NLR Gas turbine Simulation
Program Development (GSP) Team, GSP 10 User Manual, p.1-88,
Netherlands, 2004.
[15]North Atlantic Treaty Organization Research andTechnology Organization, Research and Technology Organization (RTO), Performance Prediction and Simulation of Gas Turbine Operation,
RTO-TR-044, France, 2002.
[16]Omar Othman Badran,“Gas-turbine performance improvements,”
Applied Energy 64 (1999) p.265-267, 1999.
[17]R. Frischmucth, Axial Compressor Performance and Maintenance Guide TR-111038, EPRI Licensed Material, p.3-1 to 4-10, California, 1998.
[18]Rainer Kurz and Klaus Brun, Gas Turbine Tutorial-Maintenance and Operating practices effects on degradation and life Proceedings of the 36th Turbo-machinery Symposium, p.176-179, California & Texas, 2007.
[19]Rainer Kurz and Klaus Brun,“Degradation in Gas turbine systems,”
2000-GT-315, p.1-8, 2000.
[20]Sanford F., Elias H., John Rice and Chenn Zhou,“Gas Turbine Engine
Compressor-Combustor Dynamics Simulation Design,”p.2-4, 1999.
[21]Tomas Gronstedt, Development of methods for analysis and optimization of complex jet engine systems, Department of Thermo- and Fluid
Dynamics, p.40, Sweden, 2000.
[22]W. P. J. Visser, and Broomhead M. J.,“GSP, A Generic Object-
Oriented Gas Turbine Simulation Environment,”ASME Paper No.
2000-GT-0002, 2000.
[23]W. P. J Visser, Gas Turbine Engine Simulation at NLR, p.1-2, National
Aerospace Laloratory NLR, Netherlands, 1995.
[24]Z. S. Spakovszky,“Influence of Compressor Deterioration on Engine Dynamic Behavior and Transient Stall-Margin,”Journal of
Turbomachinery Vol. 122, p.482-483, 2000.
[25]http:/news.camoc.com/list/88/88188.htm.
[26]http:/en.wikipedia.org/wiki/Jet_engine_performance, Design point,
p.2, 2008.
[27]http/:www.gspteam.com, GSP Development Team_GSP 10 Manual,
NLR, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw