進階搜尋


 
系統識別號 U0026-0812200915154749
論文名稱(中文) 含矽質廢棄物之無機聚合物
論文名稱(英文) silicon-contained waste as a raw material of inorganic polymers
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 陳志賢
研究生(英文) Ji-Hsien Chen
電子信箱 chc@csu.edu.tw
學號 N6889113
學位類別 博士
語文別 中文
論文頁數 162頁
口試委員 口試委員-鄭大偉
口試委員-方一匡
指導教授-黃忠信
口試委員-倪勝火
口試委員-李釗
口試委員-陳豪吉
召集委員-黃然
口試委員-張大鵬
中文關鍵字 陳化  活化能  鹼激發  水庫淤泥  玻璃廢棄物  鹼活化液  無機聚合 
英文關鍵字 aging  activation energy  inorganic polymer  waste glass  reservoir sludge  alkali-activator  alkali-activation 
學科別分類
中文摘要 無機聚合物耗能小且擁有優越物理與化學性質,但受限於原料價格昂貴,其仍無法取代波特蘭水泥。台灣水庫淤泥富含鋁矽酸鹽礦物,而容器玻璃與TFT-LCD玻璃亦含有高量SiO2,此等廢棄物皆具有作為無機聚合膠結材原料之潛能。本研究乃利用鹼激發原理,分別將水庫淤泥、鈉石灰容器玻璃、TFT-LCD玻璃等含矽質廢棄物,應用為無機聚合膠結材之原料,以降低無機聚合膠結材之成本。
試驗結果發現,藉由850℃煅燒6小時,可使水庫淤泥具有最佳鹼激發活性,進而取代偏高嶺土應用於無機聚合物中。水庫淤泥所製成無機膠結材具有良好工作性及晚期強度,在相同工作性下,水庫淤泥質無機聚合物所需用水量較低,因此,可藉由降低水膠比提升其抗壓強度。鈉石灰玻璃可以高溫陳化方式,促進玻璃結構解離,溶出後續聚合反應所需之矽酸鹽,如此,鹼活化液中不必添加矽酸鈉,即可拌製玻璃質無機膠結材,例如鹼當量3%時,經適當陳化程序,其抗壓強度可高達115 MPa,而且不同顏色容器玻璃所製成鹼激發玻璃無機膠結材,具有近似抗壓強度與外觀顏色。TFT-LCD玻璃作為無機膠結材原料,經適當陳化,可提升其抗壓強度至64.3 MPa,微結構相當緻密且與骨材之黏結效果良好,另外,由含液晶玻璃所製成無機膠結材,其各項物理性質皆優於素玻璃所製成者。
英文摘要 As compared to Portland cement, inorganic polymers are low energy-consumption and have excellent physical and chemical properties. But, the raw materials of inorganic polymers are expensive and thus limit their applications as construction and building materials. The reservoir sludge in Taiwan is mainly composed of aluminum-silicates. Also, container glass and TFT-LCD glass contain a high level of SiO2. The feasibility of using waste reservoir sludge, container glass and TFT-LCD glass as raw materials of inorganic polymers is evaluated here. In the study, the three waste materials were alkali-activated by using adequate alkaline activating solution to reduce the cost for the production of inorganic polymers.
Experimental results indicate that the optimum calcination temperature of reservoir sludge is 850℃ for lasting 6 hours to enhance their chemical reactivity and thus to replace the raw material of metakaolin. The reservoir sludge-based geopolymer have good workability and compressive strength. Under the same workability, the required water content for reservoir sludge-based geopolymer binders is lower as compared to Portland cement. Hence, the water/cement ratio can be further reduced to improve the compressive strength of reservoir sludge-based geopolymer binders.
Container glass can be alkali-activated by using an aging process at higher temperatures. Even without the addition of sodium silicate in alkaline activating solution, larger amounts of silicate ions can still be dissolved for the subsequent polycondensation reaction, leading to a high compressive strength glass-based geopolymer binder. For example, the compressive strength of the glass-based geopolymer binder can be up to 115MPa when the equivalent alkaline content 3% and aging process are used. Meanwhile, the effect of different types of glass on the color and compressive strength of waste glass-based geopolymer binders is found to be insignificant. At the same time, TFT-LCD glass used as a raw material of inorganic polymers can be alkali-activated by using a similar aging process. The compressive strength of TFT-LCD-based geopolymer binder can reach 64.3MPa. It is also found the binding between TFT-LCD-based geopolymer binder and aggregates is strong. Moreover, the physical properties of LCD-based geopolymer binders are consistently better than those of pure glass-based geopolymer binders.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 XI
圖目錄 XIII
符號對照表 XVI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 本研究組織與內容 5
第二章 文獻回顧 7
2.1 矽質廢棄物現況及資源化途徑 7
2.1.1 水庫淤泥 7
2.1.1.1 水庫淤泥之物理與化學特性 8
2.1.2 廢棄容器玻璃 8
2.1.2.1 應用於水泥混凝土 9
2.1.2.2 其他土木建築材料之應用 11
2.1.3 TFT-LCD玻璃 13
2.1.3.1 素玻璃之回收處理 14
2.1.3.2 含液晶玻璃之回收處理 15
2.1.3.3 銦錫氧化物 16
2.2 玻璃成分、結構與性質 16
2.2.1 玻璃成分與結構 16
2.2.2 玻璃之侵蝕 17
2.2.2.1 受水侵蝕之機制 18
2.2.2.2 受酸侵蝕之機制 18
2.2.2.3 受鹼侵蝕之機制 19
2.3 鹼激發膠結材 20
2.3.1 鹼激發爐石水泥 22
2.2.1.1 鹼激發爐石水泥之反應機理 23
2.3.1.2 鹼激發爐石水泥之產物 24
2.3.1.3 鹼激發爐石水泥存在的問題 24
2.3.2 無機聚合膠結材 25
2.3.2.1 無機聚合膠結材之反應機制 25
2.3.2.2 無機聚合膠結材之結構 27
2.3.2.3 複合型態之無機聚合膠結材 29
2.3.2.4 無機聚合膠結材之問題 31
2.3.3 鹼激發膠結材性質之影響因素 31
2.3.4 相關鹼活化反應 34
2.4 鹼激發玻璃膠結材之現況 36
第三章 水庫淤泥煅燒活性 49
3.1 材料與試驗 49
3.1.1 試驗材料 49
3.1.2 試驗計畫與方法 51
3.1.2.1 煅燒溫度對水庫淤泥結構之影響 52
3.1.2.2 煅燒水庫淤泥之卜作嵐活性與鹼激發活性 53
3.2 試驗結果分析與討論 55
3.2.1 XRD分析 55
3.2.2 FTIR分析 55
3.2.3 RSBG淨漿試體抗壓強度 56
3.2.4 卜作嵐強度活性指數試驗 57
3.2.5 卜作嵐活性試驗(CRS-石灰淨漿) 57
3.3 水庫淤泥最佳熱活化條件之綜合評定 58
第四章 水庫淤泥質無機聚合物性質 65
4.1 材料與試驗 65
4.1.1 試驗材料 65
4.1.2 試驗變數規劃 65
4.1.2.1 CRS取代量與活化劑性質 65
4.1.2.2 水膠比之影響 66
4.1.2.3 淤泥細度之影響 67
4.1.2.4 水庫淤泥攪拌時間之影響 67
4.1.2.5 砂漿性質 67
4.2 試驗結果分析與討論 68
4.2.1 RSBG之最佳配比 68
4.2.2 水膠比與強度發展趨勢 70
4.2.2.1 凝結時間 72
4.2.3 細度對RSBG強度之影響 73
4.2.4 攪拌時間對RSBG強度之影響 73
4.2.5 RSBG砂漿之性質 74
4.3 小結 75
第五章 玻璃質無機膠結材之製作 84
5.1 材料與試驗 84
5.1.1 試驗材料 84
5.1.2試驗計畫與方法 85
5.1.2.1 一般鹼激發膠結材拌合程序 85
5.1.2.2 陳化激發之製作程序 86
5.1.2.3 無鹼水溶液之陳化激發 87
5.2 試驗結果分析與討論 88
5.2.1 傳統製作方法 88
5.2.2 陳化拌合 89
5.2.2.1 陳化溫度與陳化時間之影響 89
5.2.2.2 陳化與鹼當量之影響 91
5.2.2.3 陳化效益之探討 93
5.2.2.4 AAGIB之縮聚反應 94
5.2.2.5 陳化激發效益-無鹼水溶液 96
5.3 小結 96
第六章 玻璃質膠結材性質與動力學反應 101
6.1 試驗計畫與方法 101
6.1.1 應用Arrhenius方程式分析陳化效益 101
6.1.2 鹼激發玻璃膠結材之影響因素 103
6.1.2.1 粉末細度之影響 103
6.1.2.2 養護溫度與時間之影響 103
6.1.2.3 玻璃顏色之影響 104
6.2 試驗結果分析與討論 104
6.2.1 陳化反應動力學探討 104
6.2.2 玻璃質膠結材性質之影響因素 106
6.2.2.1 細度之影響 106
6.2.2.2 養護歷程對抗壓強度之影響 108
6.2.2.3 玻璃顏色之影響 110
6.3 小結 111
第七章 TFT-LCD玻璃質膠結材性質 121
7.1 材料與試驗 122
7.1.1 試驗材料 122
7.1.2 試驗計畫與方法 123
7.1.2.1活化液劑量對LCD-AAGIB抗壓強度之影響 123
7.1.2.2 玻璃粉末粒徑之影響 124
7.1.2.3 養護溫度與時間之影響 125
7.1.2.4 LCD玻璃Si、Al溶出試驗與活化能之評估 125
7.1.2.5 LCD玻璃質膠結材砂漿性質 126
7.1.2.6 廢液晶玻璃膠結材異味之抑制 127
7.2 試驗結果分析與討論 128
7.2.1 陳化與鹼當量對抗壓強度之影響 128
7.2.2 含液晶之影響 129
7.2.3 粉末細度之影響 130
7.2.4 養護歷程之影響 131
7.2.5 LCD玻璃之溶出與活化能 132
7.2.6 砂漿性質 132
7.2.7 含液晶玻璃異味之抑制 134
7.3 小結 134
第八章 結論與建議 143
8.1 結論 143
8.2 建議 144
參考文獻 146
參考文獻 1. Davidovits, J., Geopolymers cement to minimize carbon dioxide greenhouse- warming, Ceramic Transaction 37, 165–182, 1993.
2. Metha, P. K., Reducing the environmental impact of concrete, ACI Concrete International, 23(10), 61-66, 2001.
3. Xu, H., Van Deventer, J. S. J., The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59, 247-266, 2000.
4. Krizana, D., Zivanovic, B., Effects of dosage and modulus of water glass on early hydration of alkali–slag cements, Cement and Concrete Research, 32, 1181-1188, 2002.
5. http://www.geopolymer.org
6. Davidovits, J., Geopolymer: Man-Made rock geosynthesis and the resulting development of very early high strength cement, Journal of Materials Education, 16, 91-139, 1994.
7. Davidovits, J., 30 Years successes and failures in geopolymer applications, Geopolymer 2002 Conference, Australia, Melbourne University 2002.
8. Davidovits, J., Geopolymer: Inorganic polymeric new materials, Journal of Thermal Analysis, 37, 1633-1656, 1991.
9. Wang, S. D., Pu, X. C., Scrivener, K. L., Pratt, P. L., Alkali-activated cement and concrete. A review of properties and problems, Advances in Cement Research, 7(27), 93-102, 1995.
10. Roy, D. M., Alkali-activated cements: Opportunities and challenges, Cement and Concrete Research, 29(2), 249-254, 1999.
11. He, C., Osback, B., Makovicky, E., Pozzolanic reactions of six principal clay minerals: activation, reactivaty assessments and technological effects, Cement and Concrete Research, 25(8), 1691-1702, 1995.
12. He, C., Makovicky, E., Osbaeck, B., Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite, Applied Clay Science, 10, 351-368, 1996.
13. He, C., Makovicky, E., Osbaeck, B., Thermal treatment and pozzolanic activity of Sepiolite, Applied Clay Science, 10, 337-349, 1996.
14. Davidovits, J., Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials, USA Patent 5,539,140, 1996.
15. 黃兆龍、洪盟峰、葉春爐、葉叔通,不同水庫淤泥製作輕質骨材之探討,水庫淤泥輕質骨材混凝土產製及規範研討會─論文集,P23,2003。
16. 黃忠信、郭文毅、彭淑娟,水庫淤泥生態性利用之整體研究,國立成功大學,2004。
17. Lin, K. L., Wang, N. F., Elucidating the hydration properties of paste containing thin film transistor liquid crystal display waste glass, Journal of Hazardous Materials, 159, 471-475, 2008.
18. Shi, C., Wu, Y., Riefler, C., Wang, H., Characteristics and pozzolanic reactivity of glass powders, Cement and Concrete Research 35, 987-993, 2005.
19. 蕭遠智,鹼活化電弧爐還原碴之水化反應特性,碩士論文,國立中央大學土木工程研究所,2002。
20. 馬鴻文、凌發科、楊靜、王剛,利用鉀長石尾礦製備礦物聚合材料的實驗研究,地球科學-中國地質大學學報,第27卷第5期,576-583,2002。
Ma HW, Ling FK, Yang J, Wang G, Preparation of mineral polymer from potassium feldspar waste: An experimental study, Earth Science-Journal of China University of Geoscience, 27(5), 567-583, 2005.
21. 任玉峰、馬鴻文、王剛、馮武威、丁秋霞,利用金礦製尾砂製備礦物聚合材料的實驗研究,現代地質,第2期,171-175,2003。
22. Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., Rattanasak, U., Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Management, 29, 539-543, 2009.
23. Lampris, C., Lupo, R., Cheeseman, C. R., Geopolymerisation of silt generated from construction and demolition waste washing plants, Waste Management, 29, 368-373, 2009.
24. 枋吟霞,利用焚化灰渣之水淬熔渣製成無機聚合材料之研究,碩士論文,國立台北科技大學資源工程研究所,2008。
25. Kaps, C., Buchwald, A., Property controlling influences on the generation of geopolymeric based on clay, Geopolymer 2002 International Conference, Melbourne, Australia, 2002.
26. 江康鈺、簡光勵、黃淑貞、陳宜晶,水庫淤泥燒製磚之可行性,中華民國環境保護學會學刊,第28卷第1期,1-13,2005。
Chiang KY, Chien KL, Huang SJ, Chen YC. Feasibility of recycling the reservoir sediment as a construction brick by sintering. Journal of Environment Protection, 28(1), 1-13, 2005.
27. 黃兆龍、洪盟峰,台灣石門水庫淤泥燒製輕骨料的可行性研究,建築材料學報,第8卷第5期,467-473,2005。
Huang ZL, Hong MF, Feasibility study of making lightweight aggregate from fine sediment of shimen Reservoir, Journal of Building Materials, 8(5), 467-473, 2005.
28. 陳豪吉、王順元,水庫淤泥輕質骨材之產製及其工程性質,土木水利,第33卷第5期,90-96,2006。
29. 王順元、陳豪吉、范國晃,水庫淤泥燒製輕質骨材之膨脹機理研究,建築砌塊與砌塊建築,第6期,42-47,2005。
30. 張孟弘,利用水庫淤泥造粒燒製濾料之研究,碩士論文,國立中央大學環境工程研究所,2004。
31. Kuo, W. Y., Huang, J. S., Tan, T. E., Organo-modified reservoir sludge as fine aggregates in cement mortars, Construction and Building Materials, 21, 609-615, 2007.
32. 環境保護署資源回收基管會,http://recycle.epa.gov.tw/epa/index.asp。
33. 張添晉、鄭啟璞、連奕偉,廢玻璃資源回收管理與再利用技術,永續產業發展雙月刊,第10期,67-74,2003。
34. 陳彥鳴,廢玻璃資源化再利用技術及潛勢分析,碩士論文,台北科技大學環境規劃與管理研究所,2004。
35. Shayan, A., Xu, A., Value-added utilisation of waste glass in concrete, Cement and Concrete Research, 34, 81–89, 2004.
36. Park, S. B., Lee, B. C., Kim, J. H., Studies on mechanical properties of concrete containing waste glass aggregate, Cement and Concrete Research, 34, 2181–2189, 2004.
37. Shao, Y., Lefort, T., Moras, S., Rodriguez, D., Studies on concrete containing ground waste glass, Cement and Concrete Research, 30, 91-100, 2000.
38. Schwarz, N., Neithalath, N., Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration, Cement and Concrete Research, 38, 429-436, 2008.
39. Larry, F., Glasphalt Utilization Dependent on Availability, Roads and Bridges, February 1993.
40. Su, N., Chen, J. S., Engineering properties of asphalt concrete made with recycled glass, Resources, Conservation and Recycling, 35, 259-274, 2002.
41. 陳風晨、李立寒、杜鵑,廢玻璃瀝青混合料性能的試驗研究,建築材料學報,第9卷第2期,239-244,2006。
42. 陳金獅,廢玻璃再利用於瀝青路面之研究,碩士論文,雲林科技大學營建工程系,2001。
43. 黃明鈺,廢玻璃容器與地磚坯土混合燒成燒結特性之探討,碩士論文,台北科技大學材料及資源工程系,2000。
44. Chen, G., Lee, H., Glass recycling in cement production—an innovative approach, Waste Management, 22, 747-753, 2002.
45. 吳子碩,玻璃資源砂應用於水泥原料之研究,碩士論文,台北科技大學土木與防災技術研究所,2004。
46. 徐惠忠、周明,絕熱材料生產及應用,中國建材工業出版社,2001。
47. 陳思先、鄭大偉,利用廢玻璃製成泡沫玻璃及其特性之研究,資源與環境學術研討會論文集,139-148,花蓮,2005。
48. 何峰、熊兰天,粉煤灰泡沫玻璃的研製,國外建材科技,第24卷第5期,3-5,2003。
49. 李廣申、王立權,利用廢玻璃和高爐渣製作泡沫玻璃的研究,佛山陶瓷,第12卷第8期,14-16,2002。
50. 李月明,李華,鄒卓辰(2000),利用廢玻璃研製泡沫玻璃,中國陶瓷工業,第7卷第2期,4-7,2000。
51. Ducman, V., Mladenovic, A., Suput, J. S., Lightweight aggregate based on waste glass and its alkali–silica reactivity, Cement and Concrete Research, 32, 223–226, 2002.
52. 黃英傑,TFT-LCD產業廢玻璃資源化介紹,永續產業發展雙月刊,第16期,50-55,2004。
53. 高瑛紜、劉蘭萍、王義基,液晶面板製造業廢棄物資源化現況評析,綠基會通訊,第13期,6-9,2008。
54. 呂健璋、廖婉君,廢棄液晶顯示器材料再利用介紹,工業材料雜誌,第260期,101-107,2008。
55. 張文凱、官建承、林凱隆,TFT-LCD 廢玻璃與黏土混燒製成地磚之研究,資源與環境學術研討會論文集,花蓮,2008。
56. Lin, K. L., Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles, Journal of Hazardous Materials, 148, 91–97, 2007.
57. Lin, K. L., The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute partial for clay in eco-brick, Journal of Cleaner Production, 15, 1755-1759, 2007.
58. Wang, H. Y., A study of the effects of LCD glass sand on the properties of concrete, Waste Management, 29, 335-341, 2009.
59. Wang, H. Y., A study of the engineering properties of waste LCD glass applied to controlled low strength materials concrete, Construction and Building Materials, xxx, xxx-xxx, 2009.
60. 洪煥毅,純化技術於廢棄液晶之應用,永續產業發展雙月刊, 第19期,60-67,2005。
61. 李清華、吳宗勳、陳明俊、彭御賢,廢液晶顯示器資源再生處理技術評估,工業污染防治 第91期,139-150,2004。
62. 李清華、楊昆龍,廢液晶顯示器之資源處理裝置與方法,中華民國發明專利,公告號527232,2003。
63. 李清華、彭御賢等,從廢玻璃基板中回收銦錫氧化物鍍層之方法,中華民國發明專利,公告號200631684,2006。
64. 陳靜怡,氧化鋅中介層對ITO透明導電膜性質之影響,碩士論文,成功大學材料科學及工程學系,2002。
65. 張雅婷、蕭庭哲、吳俊毅,銦金屬資源與目前資源化處理技術之探討,資源與環境學術研討會論文集,291-300,花蓮,2008。
66. 彭御賢,廢液晶顯示器資源回收之研究,碩士論文,大葉大學環境工程學系,2005。
67. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,工程材料科學 修訂版,全華科技圖書股份有限公司,2000。
68. 許芸融,液晶顯示器玻璃基板製備之探討,碩士論文,台北科技大學機電整合研究所,2002。
69. Smith, W. F., Foundations of Materials Science and Engineering, 4e, McGraw-Hill, 2006.
70. Vilarigues, M., da Silva, R. C., Characterization of potash-glass corrosion in aqueous solution by ion beam and IR spectroscopy, Journal of Non-Crystalline Solids, 352, 5368-5375, 2006.
71. 王承遇、陶瑛,硅酸鹽玻璃的風化,硅酸鹽學報,第31卷第1期,78-85,2003。
Wang CY, Tao Y, The weathering of silicate glasses, Journal of the Chinese ceramic society, 31(1), 18-85, 2003.
72. 王承遇、胡佩庸、王木琴,儀器玻璃,台灣復文興業股份有限公司,1995。
73. 邱標麟 譯,玻璃製造學,復文書局,2002。
74. 葛敦世,玻璃纖維鹼侵蝕反應的動力學探討,玻璃纖維,第5期,1-6,2005。
Ge DS, Exploration on Dynamics of Alkali Erosion Reaction in Glass Fiber, Fiber Glass, 5, 1-6, 2005.
75. 趙清林、吳正明、步恒祉,含ZrO2、Al2O3耐碱玻璃受碱侵蝕研究的影響因素及機理研究,玻璃與搪瓷,第30卷第6期,18-23,2002。
Zhao QL, Wu ZM, Bu HZ, Study on the Effecting Factors and the Mechanism of Alkali Attack to the Alkali-Resisting Glass Containg ZrO2 andf Al2O3, Glass &Enamel, 30(6), 18-30, 2002.
76. Greiner-Wreiner, E., Stoch, L., Influence of environment on the surface of ancient glass, Journal of Non-Crystalline Solids, 196, 118-127, 1996.
77. Wang, S. D., Scivener, K. L., Hydration products of alkali activated slag cement, Cement and Concrete Research, 25(3), 561-571, 1995.
78. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R., (Micro)-structural comparison between geopolymers, alkali-activated, slag cement and Portland cement, Journal of the European Ceramic Society, 26, 3789-3997, 2006.
79. 徐彬,固態鹼組分礦渣礦渣水泥的研製及其水化機理和性能的研究,博士學位論文,清華大學,1995。
80. Davidovits, J., Mineral polymers and methods of making them, USA Patent 4,349,386, 1982.
81. Palomo, A., Grutzeck, M. W., Blanco, M. T., Alkali-activated fly ashes A cement for the future, Cement and Concrete Research, 29, 1323-1329, 1999.
82. Davidovits, J., Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials, USA Patent 5,349,118, 1994.
83. Lyon, R. E., Balaguru, P. N., Forden, A., Sorathia, U., Davidovits, J., Davidovics, M., Fire resistant aluminosilicate composite, Fire and Materials, 21, 67-73, 1997.
84. Davidovits, J., Global Warming Impact on the Cement and Aggregates Industries, World Resource Review, 6(2), 263-278, 1994.
85. 成立,三種碱激發膠凝材料的反應機理及其產物,荊門職業技術學院學報,第19卷第6期,92-95,2004。
86. 禹尚仁、王悟敏,無熟料硅酸鈉況渣水泥的水化機裡,硅酸鹽學報, 第18卷第2期,104-106,1990。
87. 楊南如,碱膠凝材料形成的物理化學基礎,硅酸鹽學報,第24卷第2期,209-215,1996。
88. 蒲心誠,高強混凝土與高強鹼爐石混凝土,混凝土,第6卷第3期,1994。
89. 施國欽,大地工程學(一)土壤力學篇,文笙書局,1996。
90. Davidovits, J., Properties of Geopolymer Cement, proceedings First International Conference of Alkaline Cement and Concrete, KIEV Ukraine, 131-149, 1994.
91. Davidovits, J., Synthetic mineral polymer compound of the silicoaluminates family and preparation process, USA Patent 4,472,199, 1984.
92. Duxson, P., Provis, J. L., Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochem. Eng. Aspects, 269, 47-58, 2005.
93. Davidovits, J., Process for obtaining a geopolymeric alumino-silicate and products thus obtained, USA Patent 5,342,595, 1994.
94. Davidovits, J., Alkaline alumino-silicate geopolymeric matrix for composite materials with fiber reinforcement and method for obtaining same, USA Patent 5,798,307, 1998.
95. Davidovits, J., Early high-strength mineral polymer, United States Patent 4,509,985, 1985.
96. Yip, C. K., Lukey, G. C., Van Deventer, J. S. J., The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation, Cement and Concrete Research, 35, 1688-1697, 2005.
97. Phair, J. W., Van Deventer, J. S. J., Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer, Minerals Engineering, 14(3), 289-304, 200l.
98. 陳松,李玉香,模擬含鹼高放廢液“鹼-偏高嶺土-礦渣”固化性能研究,矽酸鹽通報,第25卷第3期,42-47,2006年。
99. 代新祥,碱激活土聚水泥的製備、結構與性能,博士論文,華南理工大學,2002。
100. Davidovits, J., Waste solidification and disposal method, USA Patent 4,859,367, 1989.
101. 金漫彤、樓梅曉、韓懁芬,摻加礦渣的土壤聚合物對重金屬的固化,浙江工業大學學報,第34卷第6期,599-602,2006。
102. Van Jaarsveld, J. G. S., Van Deventer, J. S. J., Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Industrial & Engineering Chemistry Research, 38, 3932-3941, 1999.
103. Swanepoel, J. C., Strydom, C. A., Utilisation of fly ash in a geopolymeric materic, Applied Geochemistry, 17(8), 1143-1148, 2002.
104. Barbosa, V. F. F., MacKenzie, K. J. D., Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Materials Research Bulletin, 38, 319-331, 2003.
105. Davidovits, J., Chemistry of geopolymeric systems terminology, Proceeding of Geopolymer 99 Second International Conference, 9-37, 1999.
106. Davidovits, J., Method for eliminating the alkali-aggregate reaction in concretes and cement thereby obtained, USA Patent 5,288,321, 1994.
107. Van Jaarsveld, J. G. S., Van Deventer, J. S. J., Lukey, G. C., The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal, 89, 63-73, 2002.
108. Alonso, S., Palomo, A., Calorimetric study of alkali activation of calcium hydroxide-metakaolin solid mixtures, Concrete and Cement Research, 31, 25-30, 2001.
109. 戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,台北科技大學材料及資源工程系,2005。
110. Xu, H., Van Deventer, J. S. J., Lukey, G. C., Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures, Industrial & Engineering Chemistry Research, 40, 3749-3756, 2001.
111. Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., Alkali-Activated Slag Mortars Mechanical Strength Behaviour, Cement and Concrete Research, 29, 1313-1321, 1999.
112. Shi, C., Day, R. L., Some Factors Affecting Early Hydration of Alkali-Slag Cements, Cement and Concrete Research, 26, 439-417, 1996.
113. 馬鴻文、楊靜、任玉峰、凌發科,礦物聚合材料: 研究現狀與發展前景,地學前緣,第9卷第4期,397-407,2002。
114. 文梓芸,碱-硅酸集料反應的化學原理,硅酸鹽學報,第22卷第6期,5967-604,1994。
115. 張西玲、姚愛玲,礦渣的活性激發技術及機理的研究進展,萍鄉高等專科學校學報,第3期,12-16,2007。
116. Wang﹐S. D., Scrivener, K. L., Pratt, P. L., Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24(6), 1033-1043, 1994.
117. Fernandez-Jimenez, A., Palomo, A., Composition and microstructure of alkali activated fly ash binder: Effect of the activator, Cement and Concrete Research, 35, 1984-1992, 2005.
118. 張文華、鄭大偉、吳傳威,以飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究,第十屆海峽兩岸環境保護學術研討會,台中,2005。
119. 李明霖、鄭大偉,無機聚合物吸附重金屬之研究,資源與環境學術研討會論文集,131-138,花蓮,2005。
120. Bakharev, T., Sanjayan, J. G., Cheng, Y. B., Effect of elevated temperature curing on properties of alkali-activated slag concrete﹐Cement and Concrete Research, 29(10), 1619-1625, 1999.
121. Shi C., Li, Y., Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement﹐ Cement and Concrete Research, 19(4), 527-533, 1989.
122. Shi﹐C., Xie﹐P., Interface between cement paste and quartz sand in alkali-activated slag mortars﹐Cement and Concrete Research, 28(6), 887-896, 1998.
123. Weng, L., Crentsil, K. S., Brown, T., Song, S., Effect of aluminates on the formation of geopolymer, Materials Science and Engineering B, 117, 163-168, 2005.
124. Bakharev, T., Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cement and Concrete Research, 36, 1134-1147, 2006.
125. Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., Workability and strength of coarse high calcium fly ash geopolymer, Cement & Concrete Composites, 29, 224-229, 2007.
126. Fernandez-Jimenez, A., Palomo, A., Sobrados, I., Sanz, J., The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, 91, 111-119, 2006.
127. Schmucker, M., MacKenzie, K. J. D., Microstructure of sodium of polysialate siloxo geopolymer, Ceramics International 31, 433-437, 2005.
128. Cioffi, R., Maffucci, L., Santoro, L., Optimization of geopolymer synthesis by calcination and polycondensation of kaolinitic residue, Resource, Conservation and Recycling, 40, 27-38, 2003.
129. 黃兆龍,混凝土性質與行為,詹氏書局,2002。
130. 柯昌君、龔平,蒸壓條件下廢玻璃的水熱特性研究,長江大學學報A(自然科學版),第3卷第2期,95-99,2006。
131. 鄭大偉、江世哲,以廢玻璃製成防火材料之研究,第十八屆廢棄物處理技術論文集,台中,2003。
132. Jin, W., Inorganic binders employing waste glass, U.S.A. Patent 6,296,699 B1, 2001.
133. 金左培,鹼激發玻璃材料,房材與應用,第31卷第5期,19-20,2003。
134. Biricik, H., Aköz, F., Berktay, I., Tulgar, A. N., Study of pozzolanic properties of wheat straw ash, Cement and Concrete Research, 29, 637-643, 1999.
135. Shvarzmana, A., Kovlera, K., Graderb, G. S., Shter, G. E., The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite, Cement and Concrete Research, 33, 405-416, 2003.
136. Klein, C. Hurlbut Jr., C. S., Manual of Mineralogy 21st ed, John Wiley & Sons, Inc., 2000.
137. Ravichandran, J., Sivasankar, B., Properties and catalytic activity of acid-modified montmorillonite and vermiculite, Clays and Clay Minerals, 45(6), 854-858, 1997.
138. Zivica, V., Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Construction and Building Materials, 21, 1463-1469, 2007.
139. Chang, J. J., A study on the setting characteristics of sodium silicate-activated slag pastes, Cement and Concrete Research, 33, 1005-1011, 2003.
140. Mindess, S., Young, J. F., Concrete, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.
141. Collinsa, F., Sanjayan, J. G., Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete, Cement and Concrete Research 30, 1401-1406, 2000.
142. Mehta, P. K., Concrete: Structure, Properties and Materials, Prentice- Hall, Inc., Englewood Cliffs, New Jersey, U.S.A, 1986.
143. 中央氣象局南區氣象服務:http://south.cwb.gov.tw/index1.php。
144. 汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,1999。
145. 吳柏誠,玻璃制造工藝基礎,中國輕工業,1997。
146. 鄭娟榮、譚維祖、張濤,堿-偏高嶺土膠凝材料的凝結硬化機理研究,湖南大學學報(自然科學版),第31卷第4期,60-63,2004。
Zhen JY, Qin WZ, Zhang T, The setting and hardening characteristics of alkali-activated metakaolin cementitious materials, Journal of Hunan University(Natural Sciences), 31(4), 60-63, 2004.
147. Bunker, B. C., Molecular mechanisms for corrosion of silica and silicate glasses, Journal of Non-Crystalline Solids, 179, 300-308, 1994.
148. Hosoi, K., Kawai, S., Yanagisawa, K., Yamasaki, N., Densification process for spherical glass powders with the same particle size by hydrothermal-hot pressing, Journal of materials science, 26, 6448-6452, 1991.
149. 段瑜芳、王培銘、楊克銳,堿激發偏高嶺土膠凝材料水化硬化機理的研究,新型建築材料,2006年第1期,22-25,2006。
150. Ezziane, K., Bougara, A., Kadri, A., Khelafi, H., Kadri, E., Compressive strength of mortar containing natural pozzolan under various curing temperature, Cement & Concrete Composites, 29, 587-593, 2007.
151. Barnett, S. J., Soutsos, M. N., Millard, S. G., Bungey, J. H., Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies, Cement and Concrete Research, 36, 434-440, 2006.
152. Santhanam, M., Cohen, M. D., Olek, J., Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars, Cement and Concrete Research, 32, 585-592, 2002.
153. Van Jaarsveld, J. G. S., Van Deventer, J. S. J., Lorenzen, L., The potential use of geopolymer materials to immobilise toxic metals: Part I. theory and applications, Minerals Engineering, 10(7), 659-669, 1997.
154. Fernandez-Jimenez, A., Puertas, F., Alkali-activated slag cement: kinetic studies, Cement and Concrete Research, 27, 359-368, 1997.
155. 林宏飛、三崎仲道、許淑惠,水熱熱壓條件下玻璃水化過程的研究,玻璃與搪瓷,第29卷第5期,15-20,2001。
Lin HF, Nakamichi Y, Xu SH, Study on the hydrating process of borosilicate glass by HHP, Glass & Enamel, 29(5), 15-20, 2001.
156. 范曉丹、徐廷獻、徐明霞、許淑惠、三崎仲道,水熱條件下玻璃粉末固化過程的研究,玻璃與搪瓷,第27卷第4期,9-14,1999年。
Fan XD, Xu TX, Xu MX, Xu SH, Nakamichi Y, The studies of densification process from borosilicate glass by HHP, Glass & Enamel, 27(4), 9-14, 2001.
157. 張蕙蘭,台灣平面顯示器產業的永續發展之道,永續產業發展雙月刊,第19期,4-13,2005。
158. 李清華、彭御賢等,廢液晶顯示器銦、錫含量之分析研究,工業污染防治 第99期,51-67,2006。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw