進階搜尋


 
系統識別號 U0026-0812200915133047
論文名稱(中文) 介白素-20在心血管疾病中的研究
論文名稱(英文) Study of Interleukin-20 in Cardiovascular Diseases
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 97
學期 2
出版年 98
研究生(中文) 陳威宇
研究生(英文) Wei-Yu Chen
電子信箱 s5894157@mail.ncku.edu.tw
學號 s5894157
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-張明熙
口試委員-林茂村
召集委員-江美治
口試委員-趙麗洋
口試委員-林以行
口試委員-任卓穎
中文關鍵字 神經膠質細胞  缺血性中風  內皮細胞  介白素-20  細胞激素  缺氧  動脈硬化 
英文關鍵字 ischemic stroke  atherosclerosis  interleukin-20  cytokines  glia cells  endothelial cells  hypoxia 
學科別分類
中文摘要 介白素-20 屬於介白素-10 家族並發現參與許多複雜的發炎性疾病,如乾癬,類風濕性關節炎與腎臟疾病。粥狀動脈硬化是伴隨免疫細胞浸潤的一種慢性發炎疾病,目前已經有許多的細胞激素與趨化激素被認為是動脈硬化相關因子。然而介白素與動脈硬化的關係仍然是未知的,因此我們想要探討介白素-20是否與動脈硬化有關。我們利用免疫化學染色法偵測小鼠與病人動脈硬化斑塊區域中介白素-20及其細胞素受體的表現情形。我們發現介白素-20主要表現在巨噬細胞浸潤區域,另外介白素-20及其受體也表現在血管內壁的小血管的內皮細胞上,而這樣的表現情形在沒有動脈硬化的正常的血管是相對較稀少的。我們也利用反轉錄聚合反應偵測基因的表現,介白素-20的基因轉錄本在缺氧處理或是氧化低密度脂蛋白處理的單核球細胞中增加的。而介白素-20的受體的表現在人類臍靜脈內皮細胞的表現也會因為缺氧刺激而增加。此外,介白素-20也引發內皮細胞表現趨化激素。最後,我們利用肌肉電擊的方式將介白素-20的基因送入脂蛋白-E缺陷小鼠後,發現介白素-20處理的小鼠動脈硬化程度較為嚴重。我們的研究顯示介白素-20是一個促進動脈硬化的細胞激素,並可能藉此促進粥狀動脈硬化的產生。除此之外,本研究更深入探討缺氧的模式是否調控介白素-20 的表現。細胞實驗中,細胞缺氧可以促進表皮細胞(HaCaT),腎臟上皮細胞(HEK293),軟骨細胞(Chondrocytes),單核球細胞(monocytes)與神經膠質瘤細胞(Glioblastoma cells)表現大量的介白素-20 。抑制缺氧誘發因子(HIF-1alpha)能夠抑制由氯化鈷(CoCl2)所引發的介白素-20。此外,我們也鑑定出在介白素-20 啟動子區域中兩個可能的缺氧調控片段。經由啟動子活性分析也証實氯化鈷模擬的缺氧反應能夠活化冷光報告基因之表現。動物實驗我們發現缺血性中風的大鼠血清與腦組織中介白素-20 都有大量的增加並主要局限於缺氧病灶區域內的膠狀細胞(glia cells)。導入介白素-20 的單株抗體能夠有效的改善大鼠缺血性中風所引起的腦壞死區域。此外,細胞實驗也証實神經膠質瘤細胞株(GBM8901)能表現介白素-20 及其受體,介白素-20作用於膠質細胞能促進細胞增生與促進介白素-1beta,介白素-8 與MCP-1。我們認為介白素-20 的表現在體外細胞實驗與體內的缺血性中風的模式中都能受到缺氧狀態的調控。此調控機制在缺血性中風的腦組織中可能扮演促進腦損傷的機制。由此研究得到結論,介白素-20能受到缺氧環境的調控並扮演促進發炎反應的角色。此外,在病變組織中表現增加的介白素-20可能扮演促進動脈硬化斑塊生成與促進缺血性中風後腦損傷的角色。
英文摘要 IL-20, an IL-10 family member, is involved in various inflammatory diseases, such as psoriasis, rheumatoid arthritis, intervertebral disc herniation, and renal diseases. Atherosclerosis is a chronic inflammatory disease with immune-cell infiltration. Various cytokines and chemokines have been characterized as pro- or anti-atherogenic factors. However, the association between IL-20 and atherosclerosis is undetermined. Therefore, we sought to investigate whether IL-20 is associated with atherosclerosis. We examined the expression of IL-20 and its receptor complex IL-20R1/IL-20R2 in atherosclerotic lesions of humans and mice using immunohistochemical staining. IL-20 was expressed in macrophage-rich areas. Both IL-20 and IL-20R1/IL-20R2 were expressed by endothelial cells lining the intimal microvessels, vasa vasorum, but rarely in non-atherosclerotic arteries. IL-20 transcripts increased in hypoxic monocytes and monocytes treated with oxidized low-density lipoprotein. The expression of IL-20R1 and IL-20R2 was also upregulated by HUVECs in response to hypoxic treatment. IL-20 upregulated the transcripts of CXCL9 and CXCL11 in HUVEC cells. Furthermore, in vivo administration of IL-20 expression vector using intramuscular electroporation promoted atherosclerosis in Apolipoprotein E-deficient mice. Therefore, IL-20 may act as a pro-atherogenic factor. In this study, we also investigated whether hypoxia in vitro and an in vivo model of ischemic stroke would upregulate IL-20 expression. In vitro, IL-20 expression increased in hypoxic HaCaT , HEK293 cells, chondrocytes, monocytes and glioblastoma cells. Inhibiting HIF-1alpha inhibited CoCl2-induced IL-20 expression. We identified two putative hypoxia response elements in human il20-gene promoter. Promoter activity assays showed that CoCl2-mimicked hypoxia activated luciferase reporter-gene expression. In vivo, experimental ischemic stroke upregulated IL-20 in the sera and brain tissue of rats. IL-20 stained positively in glia-like cells in peri-infarcted lesions, but not in contralateral tissue. Administration of IL-20 monoclonal antibody ameliorated ischemia-induced brain infarction of rats after experimental ischemic stroke. In vitro, RT-PCR analysis showed that glioblastoma cells GBM8901 cells expressed IL-20 and its receptor subunits IL-20R1, IL-20R2, and IL-22R1. IL-20 induced cell proliferation in GBM8901 cells by activating the Jak2/STAT3 and ERK1/2 pathways. IL-20 also induced production of IL-1beta, IL-8, and MCP-1 in GBM8901 cells. We conclude that IL-20 was responsive to hypoxia in vitro and in the ischemic stroke model and that upregulation of IL-20 in the ischemic brain may contribute to brain injury. In summary, IL-20 is a pro-inflammatory cytokine and regulated by hypoxia. The upregulation of IL-20 may contribute to the pathogenesis of atherosclerosis plaque progression and brain injury after ischemic stroke.
論文目次 Table of Contents
中文摘要 I
Abstract III
誌謝 V
Abbreviation List VII
Table of Contents X
List of Tables and Figures XII



I. Background 1
A. Interleukin (IL)-20, a member of IL-10 family cytokines 1
B. Identification, cloning, and structure of IL-20 1
C. Receptors and signal transduction of IL-20 2
D. Expression of IL-20 and its receptor subunits 3
E. Biological function of IL-20 4
F. Angiogenesis and Atherosclerosis 8
G. Hypoxia and Ischemic stroke 10
II. Rationale 12
III. Specific aims 14
A. To study the role of IL-20 in atherosclerosis 14
B. To study the role of IL-20 in hypoxia and experimental ischemic stroke 14
IV. Material and methods 15
A. Study of IL-20 in atherosclerosis 15
B. Study of IL-20 in ischemic stroke 21
V. Results 29
A. Study of IL-20 in atherosclerosis 29
B. Study of IL-20 in ischemic stroke 35
VI. Discussion 44
A. Study of IL-20 in atherosclerosis 44
B. Study of IL-20 in experimental ischemic stroke 49
C. The role of IL-20 in different diseases 54
D. Therapeutic potential of IL-20 targeting by specific antibody 55
VII. Conclusion 57
VIII. References 58
IX. Tables 67
X. Figures and figure legends 69
XI. Publications 94
XII. Biographical note 97
參考文獻 1. Gesser, B., H. Leffers, T. Jinquan, C. Vestergaard, N. Kirstein, S. Sindet-Pedersen, S. L. Jensen, K. Thestrup-Pedersen, and C. G. Larsen. 1997. Identification of functional domains on human interleukin 10. Proc Natl Acad Sci U S A 94:14620-14625.
2. Pestka, S., C. D. Krause, D. Sarkar, M. R. Walter, Y. Shi, and P. B. Fisher. 2004. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929-979.
3. Blumberg, H., D. Conklin, W. F. Xu, A. Grossmann, T. Brender, S. Carollo, M. Eagan, D. Foster, B. A. Haldeman, A. Hammond, H. Haugen, L. Jelinek, J. D. Kelly, K. Madden, M. F. Maurer, J. Parrish-Novak, D. Prunkard, S. Sexson, C. Sprecher, K. Waggie, J. West, T. E. Whitmore, L. Yao, M. K. Kuechle, B. A. Dale, and Y. A. Chandrasekher. 2001. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104:9-19.
4. Zdanov, A., C. Schalk-Hihi, A. Gustchina, M. Tsang, J. Weatherbee, and A. Wlodawer. 1995. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 3:591-601.
5. Hsieh, M. Y., W. Y. Chen, M. J. Jiang, B. C. Cheng, T. Y. Huang, and M. S. Chang. 2006. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7:234-242.
6. Wei, C. C., Y. H. Hsu, H. H. Li, Y. C. Wang, M. Y. Hsieh, W. Y. Chen, C. H. Hsing, and M. S. Chang. 2006. IL-20: biological functions and clinical implications. J Biomed Sci 13:601-612.
7. Dumoutier, L., C. Leemans, D. Lejeune, S. V. Kotenko, and J. C. Renauld. 2001. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167:3545-3549.
8. Parrish-Novak, J., W. Xu, T. Brender, L. Yao, C. Jones, J. West, C. Brandt, L. Jelinek, K. Madden, P. A. McKernan, D. C. Foster, S. Jaspers, and Y. A. Chandrasekher. 2002. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277:47517-47523.
9. Hsu, Y. H., H. H. Li, M. Y. Hsieh, M. F. Liu, K. Y. Huang, L. S. Chin, P. C. Chen, H. H. Cheng, and M. S. Chang. 2006. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54:2722-2733.
10. Nagalakshmi, M. L., E. Murphy, T. McClanahan, and R. de Waal Malefyt. 2004. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol 4:577-592.
11. Hsing, C. H., C. L. Ho, L. Y. Chang, Y. L. Lee, S. S. Chuang, and M. S. Chang. 2006. Tissue microarray analysis of interleukin-20 expression. Cytokine 35:44-52.
12. Wolk, K., S. Kunz, K. Asadullah, and R. Sabat. 2002. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168:5397-5402.
13. Liu, L., C. Ding, W. Zeng, J. G. Heuer, J. W. Tetreault, T. W. Noblitt, G. Hangoc, S. Cooper, K. A. Brune, G. Sharma, N. Fox, S. W. Rowlinson, D. P. Rogers, D. R. Witcher, P. K. Lambooy, V. J. Wroblewski, J. R. Miller, and H. E. Broxmeyer. 2003. Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20. Blood 102:3206-3209.
14. Chen, W. Y., B. C. Cheng, M. J. Jiang, M. Y. Hsieh, and M. S. Chang. 2006. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26:2090-2095.
15. Wei, C. C., W. Y. Chen, Y. C. Wang, P. J. Chen, J. Y. Lee, T. W. Wong, W. C. Chen, J. C. Wu, G. Y. Chen, M. S. Chang, and Y. C. Lin. 2005. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117:65-72.
16. Romer, J., E. Hasselager, P. L. Norby, T. Steiniche, J. Thorn Clausen, and K. Kragballe. 2003. Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J Invest Dermatol 121:1306-1311.
17. Gottlieb, S. L., P. Gilleaudeau, R. Johnson, L. Estes, T. G. Woodworth, A. B. Gottlieb, and J. G. Krueger. 1995. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med 1:442-447.
18. Nickoloff, B. J., and T. Wrone-Smith. 1999. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 155:145-158.
19. Li, X., X. Fan, K. Zhang, G. Yin, and Y. Liu. 2007. Influence of psoriatic peripheral blood CD4+ T and CD8+ T lymphocytes on C-myc, Bcl-xL and Ki67 gene expression in keratinocytes. Eur J Dermatol 17:392-396.
20. Li, H. H., Y. H. Hsu, C. C. Wei, P. T. Lee, W. C. Chen, and M. S. Chang. 2008. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 9:395-404.
21. Wei, C. C., H. H. Li, Y. H. Hsu, C. H. Hsing, J. M. Sung, and M. S. Chang. 2008. Interleukin-20 targets renal cells and is associated with chronic kidney disease. Biochem Biophys Res Commun 374:448-453.
22. Li, H. H., H. H. Cheng, K. H. Sun, C. C. Wei, C. F. Li, W. C. Chen, W. M. Wu, and M. S. Chang. 2008. Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin Immunol 129:277-285.
23. Deyo, R. A., and Y. J. Tsui-Wu. 1987. Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine 12:264-268.
24. Huang, K. Y., R. M. Lin, W. Y. Chen, C. L. Lee, J. J. Yan, and M. S. Chang. 2008.
IL-20 may contribute to the pathogenesis of human intervertebral disc herniation. Spine 33:2034-2040.
25. Ross, R. 1999. Atherosclerosis--an inflammatory disease. N Engl J Med 340:115-126.
26. Glass, C. K., and J. L. Witztum. 2001. Atherosclerosis. the road ahead. Cell 104:503-516.
27. Lusis, A. J. 2000. Atherosclerosis. Nature 407:233-241.
28. Lee, R. T., and P. Libby. 1997. The unstable atheroma. Arterioscler Thromb Vasc Biol 17:1859-1867.
29. Steinberg, D. 2002. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211-1217.
30. Lawn, R. M., D. P. Wade, T. L. Couse, and J. N. Wilcox. 2001. Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol 21:378-385.
31. Hansson, G. K. 1997. Cell-mediated immunity in atherosclerosis. Curr Opin Lipidol 8:301-311.
32. Mikita, T., G. Porter, R. M. Lawn, and D. Shiffman. 2001. Oxidized Low Density Lipoprotein Exposure Alters the Transcriptional Response of Macrophages to Inflammatory Stimulus. J. Biol. Chem. 276:45729-45739.
33. Tenaglia, A. N., K. G. Peters, M. H. Sketch, Jr., and B. H. Annex. 1998. Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina. Am Heart J 135:10-14.
34. Moulton, K. S., E. Heller, M. A. Konerding, E. Flynn, W. Palinski, and J. Folkman. 1999. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99:1726-1732.
35. Bjornheden, T., M. Levin, M. Evaldsson, and O. Wiklund. 1999. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 19:870-876.
36. Barger, A. C., R. Beeuwkes, 3rd, L. L. Lainey, and K. J. Silverman. 1984. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175-177.
37. Wang, Q., X. N. Tang, and M. A. Yenari. 2007. The inflammatory response in stroke. J Neuroimmunol 184:53-68.
38. Muir, K. W., P. Tyrrell, N. Sattar, and E. Warburton. 2007. Inflammation and ischaemic stroke. Curr Opin Neurol 20:334-342.
39. Sharp, F. R., A. Lu, Y. Tang, and D. E. Millhorn. 2000. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011-1032.
40. Dirnagl, U., C. Iadecola, and M. A. Moskowitz. 1999. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391-397.
41. Fawcett, J. W., and R. A. Asher. 1999. The glial scar and central nervous system repair. Brain Res Bull 49:377-391.
42. Barone, F. C., and G. Z. Feuerstein. 1999. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819-834.
43. Chamorro, A., and J. Hallenbeck. 2006. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke 37:291-293.
44. Samson, Y., B. Lapergue, and H. Hosseini. 2005. [Inflammation and ischaemic stroke: current status and future perspectives]. Rev Neurol (Paris) 161:1177-1182.
45. Benveniste, E. N. 1998. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259-275.
46. Buttini, M., A. Sauter, and H. W. Boddeke. 1994. Induction of interleukin-1 beta mRNA after focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 23:126-134.
47. Yamasaki, Y., N. Matsuura, H. Shozuhara, H. Onodera, Y. Itoyama, and K. Kogure. 1995. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26:676-680; discussion 681.
48. Liu, T., R. K. Clark, P. C. McDonnell, P. R. Young, R. F. White, F. C. Barone, and G. Z. Feuerstein. 1994. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25:1481-1488.
49. Sairanen, T., O. Carpen, M. L. Karjalainen-Lindsberg, A. Paetau, U. Turpeinen, M. Kaste, and P. J. Lindsberg. 2001. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke 32:1750-1758.
50. Garau, A., R. Bertini, F. Colotta, F. Casilli, P. Bigini, A. Cagnotto, T. Mennini, P. Ghezzi, and P. Villa. 2005. Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine 30:125-131.
51. Chen, Y., J. M. Hallenbeck, C. Ruetzler, D. Bol, K. Thomas, N. E. Berman, and S. N. Vogel. 2003. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748-755.
52. Pang, L., W. Ye, X. M. Che, B. J. Roessler, A. L. Betz, and G. Y. Yang. 2001. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke 32:544-552.
53. Ooboshi, H., S. Ibayashi, T. Shichita, Y. Kumai, J. Takada, T. Ago, S. Arakawa, H. Sugimori, M. Kamouchi, T. Kitazono, and M. Iida. 2005. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111:913-919.
54. Sa, S. M., P. A. Valdez, J. Wu, K. Jung, F. Zhong, L. Hall, I. Kasman, J. Winer, Z. Modrusan, D. M. Danilenko, and W. Ouyang. 2007. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178:2229-2240.
55. Caligiuri, G., S. V. Kaveri, and A. Nicoletti. 2006. IL-20 and atherosclerosis: another brick in the wall. Arterioscler Thromb Vasc Biol 26:1929-1930.
56. Li, H. H., Y. H. Hsu, C. C. Wei, P. T. Lee, W. C. Chen, and M. S. Chang. 2008. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun. 9:395-404.
57. Heuze-Vourc'h, N., M. Liu, H. Dalwadi, F. E. Baratelli, L. Zhu, L. Goodglick, M. Pold, S. Sharma, R. D. Ramirez, J. W. Shay, J. D. Minna, R. M. Strieter, and S. M. Dubinett. 2005. IL-20, an anti-angiogenic cytokine that inhibits COX-2 expression. Biochem Biophys Res Commun 333:470-475.
58. Tritsaris, K., M. Myren, S. B. Ditlev, M. V. Hubschmann, I. van der Blom, A. J. Hansen, U. B. Olsen, R. Cao, J. Zhang, T. Jia, E. Wahlberg, S. Dissing, and Y. Cao. 2007. IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs. Proc Natl Acad Sci U S A 104:15364-15369.
59. Liao, S. C., Y. C. Cheng, Y. C. Wang, C. W. Wang, S. M. Yang, C. K. Yu, C. C. Shieh, K. C. Cheng, M. F. Lee, S. R. Chiang, J. M. Shieh, and M. S. Chang. 2004. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 173:6712-6718.
60. Chen, W. Y., Y. T. Cheng, H. Y. Lei, C. P. Chang, C. W. Wang, and M. S. Chang. 2005. IL-24 inhibits the growth of hepatoma cells in vivo. Genes Immun 6:493-499.
61. Reddick, R. L., S. H. Zhang, and N. Maeda. 1994. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 14:141-147.
62. Meir, K. S., and E. Leitersdorf. 2004. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006-1014.
63. Caligiuri, G., A. Nicoletti, X. Zhou, I. Tornberg, and G. K. Hansson. 1999. Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis 145:301-308.
64. Caligiuri, G., M. Rudling, V. Ollivier, M. P. Jacob, J. B. Michel, G. K. Hansson, and A. Nicoletti. 2003. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 9:10-17.
65. Verthelyi, D., and D. M. Klinman. 2000. Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo. Immunology 100:384-390.
66. Mabjeesh, N. J., D. Escuin, T. M. LaVallee, V. S. Pribluda, G. M. Swartz, M. S. Johnson, M. T. Willard, H. Zhong, J. W. Simons, and P. Giannakakou. 2003. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:363-375.
67. Endres, M., Z. Q. Wang, S. Namura, C. Waeber, and M. A. Moskowitz. 1997. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143-1151.
68. Zhang, S. H., R. L. Reddick, J. A. Piedrahita, and N. Maeda. 1992. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468-471.
69. Halvorsen, B., T. Waehre, H. Scholz, O. P. Clausen, J. H. von der Thusen, F. Muller, H. Heimli, S. Tonstad, C. Hall, S. S. Froland, E. A. Biessen, J. K. Damas, and P. Aukrust. 2005. Interleukin-10 enhances the oxidized LDL-induced foam cell formation of macrophages by antiapoptotic mechanisms. J Lipid Res 46:211-219.
70. Yuan, Y., G. Hilliard, T. Ferguson, and D. E. Millhorn. 2003. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278:15911-15916.
71. Semenza, G. L. 1999. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551-578.
72. Mach, F., A. Sauty, A. S. Iarossi, G. K. Sukhova, K. Neote, P. Libby, and A. D. Luster. 1999. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104:1041-1050.
73. Silver, J., and J. H. Miller. 2004. Regeneration beyond the glial scar. Nat Rev Neurosci 5:146-156.
74. O'Brien, E. R., M. R. Garvin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, and S. M. Schwartz. 1994. Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145:883-894.
75. Khurana, R., M. Simons, J. F. Martin, and I. C. Zachary. 2005. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813-1824.
76. Murdoch, C., A. Giannoudis, and C. E. Lewis. 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224-2234.
77. Piali, L., C. Weber, G. LaRosa, C. R. Mackay, T. A. Springer, I. Clark-Lewis, and B. Moser. 1998. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur J Immunol 28:961-972.
78. Chen, C., Q. Hu, J. Yan, J. Lei, L. Qin, X. Shi, L. Luan, L. Yang, K. Wang, J. Han, A. Nanda, and C. Zhou. 2007. Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1alpha and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model. J Neurochem 102:1831-1841.
79. Bergeron, M., A. Y. Yu, K. E. Solway, G. L. Semenza, and F. R. Sharp. 1999. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11:4159-4170.
80. Chavez, J. C., F. Agani, P. Pichiule, and J. C. LaManna. 2000. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937-1942.
81. Chavez, J. C., and J. C. LaManna. 2002. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922-8931.
82. Vangeison, G., D. Carr, H. J. Federoff, and D. A. Rempe. 2008. The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28:1988-1993.
83. Rudge, J. S., and J. Silver. 1990. Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10:3594-3603.
84. Li, L., A. Lundkvist, D. Andersson, U. Wilhelmsson, N. Nagai, A. C. Pardo, C. Nodin, A. Stahlberg, K. Aprico, K. Larsson, T. Yabe, L. Moons, A. Fotheringham, I. Davies, P. Carmeliet, J. P. Schwartz, M. Pekna, M. Kubista, F. Blomstrand, N. Maragakis, M. Nilsson, and M. Pekny. 2008. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468-481.
85. Faulkner, J. R., J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan, and M. V. Sofroniew. 2004. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143-2155.
86. Hosoi, T., S. Wada, S. Suzuki, Y. Okuma, S. Akira, T. Matsuda, and Y. Nomura. 2004. Bacterial endotoxin induces IL-20 expression in the glial cells. Brain Res Mol Brain Res 130:23-29.
87. Cheung, W. M., C. K. Wang, J. S. Kuo, and T. N. Lin. 1999. Changes in the level of glial fibrillary acidic protein (GFAP) after mild and severe focal cerebral ischemia. Chin J Physiol 42:227-235.
88. Witt, K. A., K. S. Mark, S. Hom, and T. P. Davis. 2003. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285:H2820-2831.
89. Offner, H., S. Subramanian, S. M. Parker, M. E. Afentoulis, A. A. Vandenbark, and P. D. Hurn. 2006. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654-665.
90. Otkjaer, K., K. Kragballe, C. Johansen, A. T. Funding, H. Just, U. B. Jensen, L. G. Sorensen, P. L. Norby, J. T. Clausen, and L. Iversen. 2007. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms. J Invest Dermatol 127:1326-1336.
91. Herrmann, O., B. Baumann, R. de Lorenzi, S. Muhammad, W. Zhang, J. Kleesiek, M. Malfertheiner, M. Kohrmann, I. Potrovita, I. Maegele, C. Beyer, J. R. Burke, M. T. Hasan, H. Bujard, T. Wirth, M. Pasparakis, and M. Schwaninger. 2005. IKK mediates ischemia-induced neuronal death. Nat Med 11:1322-1329.
92. Davies, C. A., S. A. Loddick, S. Toulmond, R. P. Stroemer, J. Hunt, and N. J. Rothwell. 1999. The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 19:87-98.
93. Vila, N., J. Castillo, A. Davalos, and A. Chamorro. 2000. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31:2325-2329.
94. Dimitrijevic, O. B., S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic. 2007. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38:1345-1353.
95. Huang, K. Y., R. M. Lin, W. Y. Chen, C. L. Lee, Y. J.J., and M. S. Chang. 2008. IL-20 May Contribute to the Pathogenesis of Human Intervertebral Disc Herniation. Spine 33:2034-2040.
96. Yamasaki, Y., Y. Matsuo, N. Matsuura, H. Onodera, Y. Itoyama, and K. Kogure. 1995. Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 26:318-322; discussion 322-313.
97. Villa, P., S. Triulzi, B. Cavalieri, R. Di Bitondo, R. Bertini, S. Barbera, P. Bigini, T. Mennini, P. Gelosa, E. Tremoli, L. Sironi, and P. Ghezzi. 2007. The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 13:125-133.
98. Nishio, Y., J. Nishihira, T. Ishibashi, H. Kato, and A. Minami. 2002. Role of macrophage migration inhibitory factor (MIF) in peripheral nerve regeneration: anti-MIF antibody induces delay of nerve regeneration and the apoptosis of Schwann cells. Mol Med 8:509-520.
99. Bacher, M., E. Weihe, B. Dietzschold, A. Meinhardt, H. Vedder, D. Gemsa, and M. Bette. 2002. Borna disease virus-induced accumulation of macrophage migration inhibitory factor in rat brain astrocytes is associated with inhibition of macrophage infiltration. Glia 37:291-306.
100. Amaral, F. A., C. T. Fagundes, R. Guabiraba, A. T. Vieira, A. L. Souza, R. C. Russo, M. P. Soares, M. M. Teixeira, and D. G. Souza. 2007. The role of macrophage migration inhibitory factor in the cascade of events leading to reperfusion-induced inflammatory injury and lethality. Am J Pathol 171:1887-1893.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw