進階搜尋


   此篇論文尚未授權公開,紙本請查詢成功大學館藏
系統識別號 U0026-0812200915120317
論文名稱(中文) 應用細胞固定化技術於生物滲透性反應牆之地下水中柴油整治研究
論文名稱(英文) The Application of Biological Permeable Reactive Barrier with Immobilized Cell Technique for Diesel-Contaminated Groundwater Remediation
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 潘祈良
研究生(英文) Chi-liang Pan
學號 p5696403
學位類別 碩士
語文別 中文
論文頁數 129頁
口試委員 口試委員-高志明
指導教授-黃良銘
口試委員-鄭幸雄
口試委員-張嘉修
中文關鍵字 細胞固定化技術  生物復育  地下水  碳氫類油品汙染  滲透性反應牆 
英文關鍵字 Biological permeable reactive barrier  Bioremediation  hydrocarbon-petroleum contamination  Cell immobilization techniques  Groundwater 
學科別分類
中文摘要 近年來國內外漏油事件頻傳,造成嚴重的土壤及地下水油品污染,在現有之整治方法中,生物復育因其低成本、對環境衝擊較小且可有效達到復育成果,逐漸成為土壤及地下水整治技術的趨勢。本研究主要利用柴油降解菌處理受柴油污染之地下水,然而因地下水具有流動性,微生物會被稀釋帶出污染區,使降解效率不彰,故本研究利用細胞固定化技術把柴油降解菌固定於包埋顆粒中,再以其為單體建構一生物滲透性反應牆(Biological Permeable Reactive Barrier, B-PRB),可同時滿足以生物性技術與現地整治這兩大整治策略。
本研究分為兩大部份,第一部分為利用包埋顆粒進行重覆批次實驗,採用三種不同混菌條件,且階段性地控制於不同之碳氮比,以探討包埋之柴油降解效果及使用壽命。本實驗連續操作約一年,結果顯示,當碳氮比為100:2時,三組批次均有80%以上之降解效率,但當碳氮比降低為100:0.5時,其降解效率則下降至45%左右,顯示柴油之降解效率隨著碳氮比不同會有明顯的變化,而當重新提供充足之氮源後,其柴油降解效率即回復至80%以上,可見包埋顆粒對於環境的影響可提供緩衝的效果。而最後以人工地下水(C/N=100:1)為基質,其降解效率達90%。從前述結果可知,包埋顆粒可以維持長期穩定之柴油降解效能,且顆粒結構經長時間操作仍保持完整,可見其適用於連續進流管柱模擬現地滲透性反應牆。
第二部分為應用細胞固定化技術進行地下水整治之模擬試驗,以連續進流管柱模擬生物滲透性反應牆,探究此生物滲透性反應牆應用於現地整治之可行性,其進流為含飽和柴油之人工合成地下水(11±0.5ppm TPH-d)。從目前結果得知,在操作約200天後,此生物滲透性反應牆之柴油降解效率維持於70%以上,顯示其能穩定去除地下水中之柴油。
英文摘要 Soil and groundwater petroleum contamination is becoming more and more serious in recent years due to oil-leaking from storage tanks. Among current remediation technologies, bioremediation is getting more and more popular for its effectiveness, lower operational cost and milder environmental impacts. In this study, diesel degrading bacteria were utilized to treat the contaminated groundwater. However, the bacteria may be washed out from the contaminated zone by the groundwater flow and lowered the removal efficiency. Therefore in this study, we used the entrapment technique to immobilize the bacteria cell in alginate gel (AG) beads and developed a biological permeable reactive barrier (B-PRB) with the AG beads as monomers. This makes in-situ bioremediation of groundwater possible.
There were two main parts in this study. First, repeated batch tests using AG beads were conducted to evaluate the diesel degradation efficiency and duration of the beads. Three different types of bacteria mixing techniques were used. Initial diesel concentration was about 500 ppm TPH-d. Also, the carbon to nitrogen ratio (C/N ratio) was changed during the repeated batches. The repeated batches were conducted for about one year. Results showed that the diesel degradation efficiency achieved more than 80% for all three batches at C/N=100:2. However, when C/N ratio changed to 100:0.5, the diesel degradation efficiency decreased to about 45%. This shows that appropriate C/N ratio is an important factor for groundwater diesel degradation. When we supplied sufficient nitrogen source (C/N=100:2) after this decrease, the diesel degradation efficiency recovered to above 80%. This indicates that the beads can mitigate the impact due to the change of the environment. In the last few runs, synthetic groundwater (C/N=100:1) was used and the diesel degradation efficiency was about 90%. From the results, we can conclude that the AG beads remained active for diesel degradation after a long period of operation. Also the structure of the beads remained. This shows that the AG beads can applied to continuous flow B-PRB.
In the second part of this study, a lab-scale continuous flow B-PRB column was developed to study the possibility of in-situ groundwater remediation with B-PRB. Synthetic groundwater with saturated diesel (11±0.5 ppm TPH-d) was used as influent. Results showed that the diesel degradation efficiency was about 70% during the whole operational period (200 days). This shows that the B-PRB retained good removal efficiency after a long period of operation.
論文目次 摘要 II
Abstract III
致謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 文獻回顧 5
2-1 台灣地下水資源概況 5
2-1-1台灣地區地下水資源與地下水位現況 5
2-1-2台灣地區之地下水氧化還原環境及污染物宿命 7
2-2台灣土壤與地下水受石油碳氫化合物污染現況 8
2-2-1 污染來源 8
2-2-2 國內與國外污染現況 10
2-3-1 土壤與地下水污染整治技術應用趨勢 16
2-3石油組成與柴油特性 19
2-3-1 石油產品分類 19
2-3-2 柴油的物理與化學特性 20
2-3-3 柴油的組成 21
2-3-4 柴油之毒性 23
2-4 石油碳氫化合物汙染土壤與地下水之傳輸現象 23
2-5 受石油碳氫化合物污染土壤與地下水整治復育技術 25
2-5-1抽出處理(Pump and Treat) 25
2-5-2空氣注入法(Air Sparging) 26
2-5-3 共溶劑與界面活性劑沖洗法(Multi-Phase Extraction) 27
2-5-4 化學氧化法(Chemical Treatment) 28
2-5-5 滲透性反應牆(Permeable Reactive Barrier, PRB) 28
2-6 生物處理技術(Bioremediation) 31
2-6-1生物復育技術的原理 31
2-6-2 生物復育技術之優、缺點 33
2-6-3 生物復育影響因子 34
2-7固定化技術 42
2-7-1 固定化技術之發展演進 (陳, 2000) 42
2-7-2 固定化方法分類 42
2-8 細胞固定化技術特性 45
2-8-1細胞固定化優點 45
2-8-2 細胞固定化技術於環境工程應用上的限制 46
2-8-3 細胞固定化擔體特色 46
2-9 生物降解碳氫化合物類反應之動力推導 47
第三章 實驗設備與方法 48
3-1 研究架構與流程 48
3-1-1優勢柴油降解菌前處理 49
3-1-2細胞固定化顆粒製作 50
3-1-3搖瓶批次實驗設備 51
3-1-4 批次培養基與緩衝溶液 52
3-1-5 純菌優勢培養之培養基 54
3-1-6連續進流管柱模試驗實驗設備 55
3-1-7 含飽和柴油之人工合成地下水溶液配置方法 56
3-2 水質及氣體組成分析方法及使用儀器 57
3-2-1 水質分析 57
3-2-2 水中柴油總碳氫化合物 58
3-2-3 矽膠淨化法 58
3-2-4 氣體組成分析 59
3-2-5 漿液總有機碳分析 59
3-2-6 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 59
3-2-7 揮發性懸浮固體物(MLVSS) 60
3-2-8 菌落數分析(平板稀釋法) 61
第四章 結果與討論 63
4-1 細胞固定化技術應用於液相柴油降解之批次實驗 63
4-2 液相柴油降解之批次實驗 64
4-2-1 包埋不同菌株對柴油生物降解的影響(第一階段) 64
4-2-1-1 不同菌株在懸浮狀態對柴油生物降解的效果 64
4-2-1-2不同菌株包埋後對柴油生物降解的效果 66
4-2-1-3 懸浮細胞生長菌量與顆粒上細胞生長菌量比較 70
4-2-1-4小結 72
4-2-2以不同包埋混菌方式對柴油生物降解的效果(第二階段) 73
4-2-2-1 由GC-FID圖譜探討純菌及混菌對液相柴油降解之影響 77
4-2-2-2小結 80
4-2-3進行重複批次(Repeated Batch)實驗(第三階段) 81
4-2-3-1重複批次(Repeated Batch)實驗之相關性分析 90
4-2-3-2重複批次(Repeated Batch)實驗之反應動力分析 92
4-2-3-3 評估包埋顆粒本身所提供之柴油降解動力分析 102
4-2-3-4小結 110
4-3 模擬生物滲透性反應牆之連續進流管柱操作 112
4-3-1連續進流管柱設計因子與操作情形 112
4-3-2模擬生物滲透性反應牆之管柱出流水水質評析 114
4-3-3包埋優勢柴油降解菌對管柱柴油去除能力的影響 118
第五章 結論與建議 122
5-1 結論 122
5-1-1細胞固定化技術應用於液相柴油降解之批次實驗 122
5-1-2細胞固定化技術應用於連續進流管柱模擬試驗 123
5-2 建議 124
第六章 參考文獻 125
參考文獻 Atlas, R.M. (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews 45:180-209.
Atlas, R.M. (Ed.) (1984) Petroleum Microbiology. Macmillan Publishing Company, New York, USA.
Amarante, D. (2000) Applying in site chemical oxidation. Pollution Engineering 32(2): 40-42.
ATSDR (2005) online data. http://www.atsdr.cdc.gov/
Baheri, H. and Meysami, P. (2001) Feasibility of fungi bioaugmentation in composting a flare 176 pit soil. Journal of Hazardous Materials 89: 279–286.
Baker, K.H. and Herson, D.S. (1994) Bioremediation. McGraw-Hill, NY, USA.
Bossert, I. and Bartha, R. (1984) The fate of petroleum in soil ecosystems. In: Atlas, R.M. (Ed.). Petroleum Microbiology. Macmillan Publishing Company, NY, USA, 435-476.
Callegari J.P. and Francotte C. (1986) Physiological behavior of alginate immobilized cells. In: Institute and Chemical Engineers (Ed.). Process Engineering Aspects of Immobilized Cell Systems. Franklin Book Co., Rugby, USA. (1986)
Cohen, R.M., Mercer, J.W. (1993) DNAPL Site Evaluation. CRC Press, Boca Raton, FL, USA.
Dibble, J.T. and Bartha, R. (1979) Effect of environmental parameters on biodegradation of oil sludge. Applied and Environmental Microbiology 37:729-739.
Fagerlund, F.F., Niemi A., Oden, M. (2006) Comparison of relative permeability–fluid saturation–capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media. Advances in Water Resources 29: 1705-1730.
Foght, J.M. and Westlake, D.W.S. (1987) Biodegradation of hydrocarbons in freshwater. In: Vandermeulen, J.H., Hrudey, S.E. (Eds.). Oil in Freshwater: Chemistry, Biology, Countermeasure Technology. Pergamon Press, NY, USA, 217-230.


Frankenberger Jr., W.T. (1992) The need for a laboratory feasibility study in bioremediation of petroleum hydrocarbons. In: Calabrese, E.J., Kostecki, P.T.(Eds.). Hydrocarbon contaminated soils and groundwater. Lewis Publishers: Boca Raton, FL, 237-293.
Huesemann, M.H. (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environmental Science and Technology 29:7–18.
Jorgensen K.S., Puustinenl J., Suortti A.M. (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution 107: 245-254.
Kampfer, P., Steiof, M., Dott, W. (1991) Microbial characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbial Ecology 21:227-251.
Ko, S.H. and Lebeault, J.M. (1999) Effect of a mixed culture on cooxidation during the degradation of saturated hydrocarbon mixture. Journal of Applied Microbiology 87:72–79.
Leahy, J.G. and Olwell, R.R. (1990) Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54: 305-315.
Liebega, E.W. and Cutright, T.J. (1999) The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration & Biodegradation 44:55-64.
Morgan, P., and Watkinson, R.J. (1989) Hydrocarbon degradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65-71.
Pankow, J.F., Cherry, J.A. (1996) Dense Chlorinated Solvent and Other DNAPLs in Ground Water: History, Behavior and Remediation. Waterloo Press, Ontario, Canada.
Parra, J.L., Guinea J., Manresa M.A., Robert M., Mercade M.E., Comelles F., Bosch M.P. (1989) Chemical characterization and physicochemical behavior of biosurfactants. Journal of the American Oil Chemist’ Society 66:141-145.
Providenti, M.A., Lee, H., Trevors, J.T. (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology and Biotechnology 12:379-395.

Ramstad, S. and Sveum, P. (1995) Bioremediation of oil-contaminated shorelines: effects of different nitrogen sources. In: Hinchee, R.E., Kittel, J.A., Reisinger, H.J. (Eds.). Applied Bioremediation of Petroleum Hydrocarbons. Battelle Press, Columbus, OH, USA, 415-422.
Rosenberg, E. (1992) The hydrocarbon-oxidizing bacteria. In: Balows, A., Truper, H.P., Dworkin, M., Harder, W., Schleifeer, K.-H. (Eds.). The Prokaryotes. Springer-Verlag, New York, 449-459.
Rosenberg E., Ton, E.Z. (1996) Bioremediation of petroleum contamination. In: Crawford, R. L., Crawford, D. L., (Eds.). Bioremediation: Principles and Applications. Cambridge University Press, UK, 100-124.
Ruberto, L., Vazquez, S.C., Mac Cormack, W.P. (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration & Biodegradation 52:115-125.
Schwille, F. (1988) Dense Chlorinated Solvents in Porous and Fractured Media Model Experiments (English Language Edition, translated by Pankow, J.F.). Lewis Publishers: Baca Raton, FL, USA.
Siegrist, R.L. (2002) Fundamentals of In Site Chemical Oxidation (ISCO). Teleconference of In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquid. Chicago, IL. (http;//www.clu-in.org/).
Song, H.G. and Bartha, R. (1990) Effect of jet fuel spills on the microbial community of soil. Applied and Environmental Microbiology 56:652-656.
Sutherson, S.S. (1997) Remediation Engineering: Design Concepts. CRC Press, Boca Raton, FL, USA.
Trevor J.T. and Elsas J.D. (1992) Use of alginate and other carriers for encapsulation of microbial cells. Microbial Release: Viruses, Bacteria, Fungi 1:61-69.
USEPA. (1995) In-Situ Groundwater Bioremediation. In: United States Environmental Protection Agency. How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites: A Guide For Corrective Action Plan Reviewers. EPA 510-B-94-003, EPA 510-B-95-007, EPA 510-R-04-002.
USEPA. (1999) Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. EPA-542-R-99-002. United States Environmental Protection Agency, Washington D.C., USA.
USEPA. (2001) A Citizen’s Guide to Pump and Treat. EPA-542-F-01-025. United States Environmental Protection Agency, Washington D.C., USA.
USEPA. (2001) A Citizen’s Guide to Soil Vapor Extraction and Air Sparing. EPA-542-F-01-006. United States Environmental Protection Agency, Washington D.C., USA.
USEPA. (2002) Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: an Evaluation at Two Sites. United States Environmental Protection Agency, Washington D.C., USA.
USEPA. (2007) Treatment Technologies for Site Cleanup: Annual Status Report (Twelfth Edition). United States Environmental Protection Agency.
Van Hamme, J.D., Singh A., Ward O.P. (2003) Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67: 503–549.
Venkateswaran, K. and Harayama, S. (1995) Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Canadian Journal of Microbiology 41:767–775.
Willaert R.G., Baron G.V., de Backer L. (1996) Immobilized living cell systems: Modeling and Experimental Methods. John Wiley, Chichester, UK.
Winter, J.D., Meyers, J.E., Deever, W.R. (1993) Process for treating oily sludge. United States Patent No. 5,207,912.
Yuste, L., Corbella, M.E., Turiegano, M.J., Karlson, U., Puyet, A., Rojo, F. (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiology Ecology 32:69–75.
中華民國環境工程學會,林財富主編(2008),土壤與地下水汙染整治:原理與應用。
中國石油公司訓練所(1996),石油產品及其應用(上、下冊),蘭潭彩色印刷股份有限公司。
水利署(2003),台灣地區水資源開發綱領計畫,網頁資料,http://www.wra.gov.tw。
方彥程(2007),柴油降解菌應用於土耕法及結合細胞固定化技術降解水中柴油之研究,國立成功大學環境工程系碩士論文。
台灣中油股份有限公司(2008),石油教室,四通八達輸油網—油管與泵站,http://www.cpc.com.tw/big5/content/index01.asp?sno=198&pno=108。
周建良(2005),醣脂類生物界面活性劑rhamnolipid發酵基質最適化及生產策略之研究,國立成功大學化學工程系碩士論文。
馬志強(2005),應用生物界面活性劑促進柴油汙染土壤中原生菌生物降解效率,國立成功大學環境工程系碩士論文。
高俊璿(2008),高濃度石化油汙染土壤之不同微生物降解三類石油碳氫化合物研究,國立成功大學環境工程系碩士論文。
高雄市環境保護局土水汙染整治資訊網(http://depweb.ksepb.gov.tw/2/soil/p2.html)
張嘉修,謝勤毅,魏毓宏,葉茂淞(2006),利用乳膠固定化Bacillus subtilis 生產油類生物降解之助劑-Surfactin,第三十一屆廢水處理技術研討會。
張儷馨(2008),受油汙汙染土壤之生物復育測試與微生物族群變化之研究,國立成功大學環境工程系碩士論文。
陳文福(2003),台灣地區之地下水氧化還原環境及污染物宿命,水文地質調查與應用研討會論文集,85-101。
陳國誠(2000),生物固定化技術與產業應用,茂昌圖書有限公司。
曾依蕾(2005),柴油降解菌組合的最佳化,國立成功大學環境工程系碩士論文。
楊明潔(2006),柴油分解菌與生物界面活性劑應用於土壤地下水復育之研究,國立成功大學環境工程系碩士論文。
經濟部工業局(2007),石油碳氫化合物土壤及地下水污染預防與整治技術手冊 (2007)
經濟部水利署(2002),台灣地區地下水觀測網管理決策支援系統建置。
經濟部水利署(2002),水文年報。
經濟部水利署(2003),台灣地區水文通訊。
經濟部水利署(2007),民國95年水資源供需統計,水文年報。
蔡見能(2005),地面儲槽洩漏污染潛勢評估及傳輸模式研究,朝陽科技大學環境工程與管理所碩士論文。
環保署(2001),全國十年以上加油站及大型儲槽潛在污染源調查計畫
環保署土壤及地下水污染整治基金管理委員會(2008),場址資訊-土壤及地下水污染整治網,http://sgw.epa.gov.tw/public/site_chart.asp。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2029-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2059-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw